Reg. No.					1			
	Reg. No.							

Question Paper Code: 27206

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015.

Third Semester

Electrical and Electronics Engineering

EE 6301 — DIGITAL LOGIC CIRCUITS

(Common to Electronics and Instrumentation Engineering and Instrumentation and Control Engineering)

(Regulations 2013)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. What is an unit distance code? Give an example.
- 2. Define Fan-out.
- 3. Convert the given expression in canonical SOP form Y = AB + A'C + BC'.
- 4. Draw the logical diagram of EX-OR gate using NAND gates.
- 5. Draw the truth table and state diagram of SR flip-flop.
- 6. What is edge triggered flip flops?
- 7. What is PROM?
- 8. Compare pulsed mode and fundamental mode asynchronous circuit.
- 9. Write the behavioral model of D flip flop.
- 10. List out the operators present in VHDL.

PART B — $(5 \times 16 = 80 \text{ marks})$

- 11. (a) (i) Draw the CMOS logic circuit for NOR gate and explain its operation. (8)
 - (ii) Perform the following operation $(756)_8 (437)_8 + (725)_{16}$. Express the answer in octal form. (8)

	(b)	(i)	A 12 bit Hamming code word containing 8 bits of data and 4 parity bits is read from memory. What was the original 8 bit data word that was written into memory if the 12 bit word read out is as (1) 101110010100 and (2) 111111110100.
		(ii)	Briefly discuss weighted Binary code. (4)
12.	(a)	(i)	Simplify the boolean function using K-map and implement using only NAND gates.
			$F(A,B,C,D) = \sum m(0.8,11,12,15) + \sum d(1.2,4,7,10,14).$
			Mark the essential and non-essential prime implicants. (8)
		(ii)	Design a full subtractor and implement using logic gates. Or
	(b)	(i)	Design a 4 bit BCD to excess 3 code converter and implement using logic gates. (8)
		(ii)	What is a multiplexer? Implement the following Boolean function with 8×1 MUX and external gates
			$F(A, B, C, D) = \sum m(1, 3, 4, 11, 12, 13, 14, 15). $ (8)
13.	(a)	(i)	A sequential circuit with two D flip flops A and B, input X and output Y is specified by the following next state and output equations
			A(t+1) = AX + BX,
			B(t+1) = A'X
			Y = (A + B)X'.
			Draw the logic diagram, derive state table and state diagram. (12)
		(ii)	Realize T flip-flop using JK flip-flop. (4)
		91	Or
	(b)	(i)	Design a synchronous decade counter using T flip flop and construct the timing diagram (8)
		(ii)	Design a mealy model of sequence detector to detect the pattern 1001. (8)
14.	(a)		gn an asynchronous sequential circuit (with detailed steps involved) has 2 inputs x_1 and x_2 and one output z. The circuit is required to
		give	an output $z = 1$ when $x_1 = 1$, $x_2 = 1$ and $x_1 = 1$ being first. (16)
			Or
	(b)	bina	w how to program the fusible links to get a 4 bit Gray code from the ry inputs using PLA and PAL and compare the design requirements PROM. (16)
15.	(a)	(i)	Write a VHDL program for 1 to 4 Demux using dataflow modelling. (8)
		(ii)	Write a VHDL program for Full adder using structural modelling.(8) Or
	(b)	Expl	ain in detail the RTL design procedure. (16)