Reg. No.

Question Paper Code : 51439

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2014.

Fourth Semester

Electrical and Electronics Engineering

EE 2255/EE 46/EC 1261 A/080280029/10133 EE 406 A – DIGITAL LOGIC CIRCUITS

(Regulation 2008/2010)

(Common to PTEE 2255 – Digital Logic Circuits for B.E (Part-Time) Third Semester Electrical and Electronics Engineering – Regulation 2009)

Time : Three hours

Maximum : 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

1. State De Morgan's theorem.

2. Give examples for weighted codes.

3. What is the drawback of SR flipflop?

4. What is a synchronous sequential circuit?

5. What is FPGA?

6. List the factors used for measuring the performance of digital logic families.

7. What is a turing machine?

8. What are the drawbacks in designing asynchronous sequential machines?

. 9. What are the advantages of hardware languages?

10. Write VHDL code for half adder in data flow model.

PART B — $(5 \times 16 = 80 \text{ marks})$

- 11. (a) Solve using Quine McCluskey method. Σ 1,3,5,7,8,16,20,25,31. (i) (8)(ii) Design 3 bit magnitude comparator. (8)Or (b) (i) Design 2421 to excess -3 code converter. (8)(ii)How can you convert 4×16 decoder to 16×1 MUX? (8) 12. (a)(i) Construct a JK flipflop using JK flipflop, a 2×1 MUX and an inverter. (8)(ii) A sequential circuit has two JK flipflops A and B, two inputs x and y, and one output z. The equations are $J_A = Bx + B'y'; K_A = B'xy'$ $J_B = A'x; K_B = A + xy'$ z = Ax' v' + Bx' v'.Draw the logic diagram and state table. (8) Or Design a sequential circuit with two D – flip flops A and B and one (b) (i)
 - (i) Design a sequential circuit with two D flip flops A and B and one input x. When x = 0, the state of the circuit remains the same. When x = 1, the circuit goes through the state transitions from 00 → 01 → 11 → 10 → 00 and repeats.

(ii) Design mod 7 counter using D flipflops.

13. (a) (i) Design asynchronous BCD counter using JK flipflops. (8)

(ii) An asynchronous sequential circuit is described by $Y = x_1 x'_2 + (x_1 + x'_2) y; z = y$. Draw the logic diagram, transition table and output map. (8)

Or

- (b) (i) Find a circuit that has no static harzards and implements boolean function $F(A, B, C, D) = \sum (0, 2, 6, 7, 8, 10, 12)$. (8)
 - (ii) Find a binary state assignment for the reduced flow table below. (8)

	1102			
	00	01	11	10
a	(a) , 0	a , 1	b, –	d, –
о	a, –	ⓑ, 0	(b) , 0	c, –
c	a, –	, -	d, –	e, –
ł	á, –.	a, –	d, –	©, 0
e	a, –	() , 0	() , 1	() , 1

rr

(8)

- 14. (a) (i) Explain the different types of programmable logic devices with neat schematic and compare them. (10)
 - (ii) Draw an ECL AND gate and explain.

Or

- (b) Compare the characteristic features of TTL, ECL, CMOS digital logic families. (16)
- 15. (a) Write VHDL code for full adder and 8×1 multiplexer. (16)

Or

(b) Write VHDL code for JK master slave flipflops and using JK FF as structural element write code for 4 bit Asynchronous counter. (6 + 10)

(6)