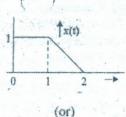
B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2006

Fourth Semester

EC 220

Electronics and Communication Engineering (Common to BE (Part-Time) Third Semester R 2005) EC 1252 – SIGNALS AND SYSTEMS Electronics and Communication Engineering

Time: Three hours Maximum: 100 marks

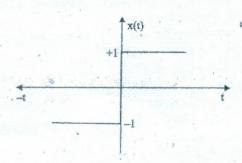

Answer ALL questions PART A $- (10 \times 2 = 20 \text{ marks})$

- 1. Verify whether $x(t) = Ae^{-\alpha t} u(t)$, $\alpha > 0$ is an energy signal or not.
- 2. Show that the complex exponential signal $x(t) = e^{jw_0t}$ is periodic and that the fundamental period is $2\pi/w_0$.
- 3. State any two properties of Discrete-time systems.
- 4. Find the Laplace transform of an unit step function.
- 5. What is alaising?
- 6. State any two properties of the region of convergence for the z-transform.
- 7. State the linearity and periodicity properties of discrete time fourier transform.
- 8. Write the condition for the LTF system be causal and stable.
- 9. Realize the following system y(n) = 2y(n-1) x(n) + 2x(n-1)in Direct form I method.
- Draw the perallel and cascade form structure.

PART B - $(5 \times 16 = 80 \text{ marks})$

11. (a) (i) Explain the classification of continuous time signals. (10)

(ii) Consider the signal x(t) shown in figure. Plot x(t+1) and $x\left(\frac{3}{2}t\right)$ (6)



(or)

(b) (i) Find out the exponential fourier series for the impulse main shown in fig. Also plot the magnitude and phase spectrum. (8)

- 11. (b) (ii) State and explain any four properties of fourier series. (8)
- 12. (a) (i) Find the fourier transform of the signum function shown in figure. (4)

(ii) Prove the slating property of fourier transform and hence and find the fourier transform of $f(t) = e^{-0.5t^{\frac{10}{4}}}u(t)$ (6)

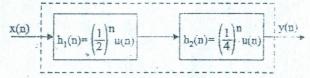
(iii)	With an example show how impulse response and transfer function of a system can be obtained using
	Laplace tránsform. (6)
	(or).
(b)	(i) State and prove Parsevals relation. (7)
(ii)	Check whether the following systems are stable and

- (ii) Check whether the following systems are stable and causal:
 - (1) $h(t) = e^{-2t}u(t-1)$

12:

(2) $h(t) = e^{-4t} u(t+10)$

(3)
$$h(t) = te^{-1}u(t)$$
 (9)


- 13. (a) State the prove the sampling theorem. Also explain how reconstruction of original signal is done from the sampled signal.

 (8 + 8)
- 13. (b) (i) State and prove Initial value theorem
 - (ii) Determine the Z-transform of the signal $x(n) = na^n u(n)$ and hence determine z-transform of the unit ramp signal v(n)
- 14. (a) (i) Convolve the following two sequences linearly x(n) and h(n) to get y(n), $x(n) = \{1, 1, 1\}$ and $h(n) = \{2, 2\}$. Also give the illustration.
 - (ii) Explain the properties of convolution. (6)
 - (b) (i) Explain the properties of an LTI system.
 - 14. (b) (ii) Determine the range values of the parameter a of for which that linear Time Invariant system with impulse response h(n) is stable.
 - $E(n) = a^n, n \ge 0$ and n even = 0, otherwise
 - 15. (a) (4) Give the summary of elementary blocks used a represent discrete time systems.

15. (a) (ii) A difference equation of a discrete time system is given below:

$$y(n) - \frac{3}{4}y(n-1) + \frac{1}{8}y(n-2) = x(n) + \frac{1}{2}x(n-1)$$
Draw direct form - I and direct form - H-structures.(6)

15. (b) Two discrete time LTI systems are connected in cascade as shown in the figure. Determine the unit sample response of this cascade connection. Unit sample response of overall system = h(n).

Downloaded from http://annaunivportal.co.nr