ANNA UNIVERSITY COIMBATORE

B.E. I B.TECH. DEGREE EXAMINATIONS : DECEMBER 2009 REGULATIONS - 2007

FOURTH SEMESTER - ELECTRONICS \& COMMUNICATION ENGINEERING

 070290013 - SIGNALS AND SYSTEMSTIME : 3 Hours
PART - A

Max.Marks : 100

$(20 \times 2=40$ MARKS $)$

ANSWER ALL QUESTIONS

1. Find average power of the signal, $x[n]=2^{n} u[n]$
2. If the discrete, time signal $x[n]=\{-1,0,7,2,5,-6,-4,3\}$, then find $y[n]=x[2 n-3]$
3. Check whether the system defined by $h[n]=\left[3(0.5)^{n}-4(0.25)^{n}\right] u[n]$ is timeinvariant.
4. Write the relationship between unit step, unit impulse \& unit ramp signals.
5. Prove that for the causal LSI system the impuise response $\mathrm{h}[\mathrm{n}]=0$, for $\mathrm{n}<0$
6.

Determine even and parts of the signal, $x[n]=\left(\frac{1}{2}\right)^{n} u[n]$
7. Determine whether the following signal is periodic, if periodic determine fundamental period, $x[n]=e^{i 7 \pi n}$

Determine the Nyquist rate for the signal $x(t)=1+\cos (2000 \pi t)+\sin (4000-t)$
What is aliasing? How will you avoid it?
State Parseval's theorem.
Find Fourier transform of $x(t)=\exp (-3|t-2|)$

A signal $x(t)$ is ideally sampled by a train of impulses occurring every $T s$ sec Considering the signal $x(t)$ to be band limited to $f m \mathrm{~Hz}$ and also that Ts $\ll 1 / \mathrm{fm}$. Sketch the sampled signal's spectrum

Write the equations for forward and inverse Laplace Transform
Find Laplace transform of $x(t)=\exp (|t|)$
Determine the inverse Z transform $X(z)=\frac{4 z^{-2}}{\left[1-\frac{1}{6} z^{-1}\right]^{-2}},|z|>\frac{1}{6}$
Find Z transform of $x[n]=a^{|n|}, a>0$
Determine DTFT of $\mathrm{x}[\mathrm{n}]=\mathrm{a}^{\mathrm{n}} \mathrm{u}[\mathrm{n}]$
Obtain the magnitude response of a DT system defined by the difference equation $y[n]=x[n]-1 / 3 x[n-1]$

Compare Z transformation with DTFT

Find inverse z-transform of $X(z)=\log \left(1+a z^{-1}\right)$ ROC $|z|>a$

PART - B

$(5 \times 12=60$ MARKS $)$

ANSWER ANY FIVE QUESTIONS

21. Determine whether the following systems are (1) memory-iess (2) timeinvariant (3) linear (4) causal and (5) stable
(a) $y(t)=x(t / 2)$
(b) $y(n)=x(-n)$
(c) $y(t)=x\left(t^{2}\right)$
(d) $y(n)=n x(n)$
a) Briefly explain about the following basic signals, unit step unit ramp. unit impulse and exponential. Also derive the relationships between the first 3 basic signals mentioned above
b) With the help of mathematical equations, briefly explain about classification of CT signals namely periodic and aperiodic, energy and power, even and odd.
22. For a discrete time system described by the difference equation $y[n]=3 x[n]-4 x[n-1]+3.5 y[n-1]-1.5 y[n-2]$, determine its frequency response and response to an input $x[n]=2^{-n} u[n]$. Plot the magnitude response of the system.

State and prove sampling theorem
25. a) State and prove convolution in time and convolution in frequency properties of Laplace transform
b) A system has the transfer function $\mathrm{H}(\mathrm{s})=\frac{2}{\mathrm{~s}+3}+\frac{1}{\mathrm{~s}-2}$. Find the impulse response assuming the system is stable, and the system is causal
26. a) State and prove any 2 properties of the DTFT 6
b) State and prove any 2 properties of DFT $x[n]=u[-n-1]+\left(\frac{1}{2}\right)^{n} u[n]$, the Z transform of the output of the system is $Y(Z)=\frac{-\frac{1}{2} Z^{-1}}{\left(1-\frac{1}{2} Z^{-1}\right)\left(1+Z^{-1}\right)}$. Determine $H(Z)$, the Z transform of the impulse response and also determine the output $y[n]$.

