	ANNA UNIVERSITY COIMBATORE
	B.E. / B.TECH. DEGREE EXAMINATIONS : DECEMBER 2009
	REGULATIONS - 2007
F	FOURTH SEMESTER - ELECTRONICS & COMMUNICATION ENGINEERING
	070290013 - SIGNALS AND SYSTEMS
TIME	: 3 Hours Max.Marks : 100
	PART – A
	(20 x 2 = 40 MARKS)
	ANSWER ALL QUESTIONS
1.	Find average power of the signal, $x[n] = 2^n u[n]$.
2.	If the discrete time signal $x[n] = \{-1, 0, 7, 2, 5, -6, -4, 3\}$, then find
	v[n] = x[2n-3]
3.	Check whether the system defined by $h[n]=[3(0.5)^n - 4(0.25)^n] u[n]$ is time-
	invariant.
4.	Write the relationship between unit step, unit impulse & unit ramp signals.
5	Prove that for the causal LSI system the impulse response $h[n] = 0$, for $n < 0$
6.	Determine even and parts of the signal, $x[n] = \left(\frac{1}{2}\right)^n u[n]$
7.	Determine whether the following signal is periodic, if periodic determine
	fundamental period, $x[n] = e^{j7\pi n}$
8.	Determine the Nyquist rate for the signal $x(t) = 1 + \cos(2000\pi t) + \sin(4000\pi t)$
9.	What is aliasing? How will you avoid it?
10.	State Parseval's theorem.
11.	Find Fourier transform of $x(t) = \exp(-3 t-2)$

- A signal x(t) is ideally sampled by a train of impulses occurring every Ts sec.
 Considering the signal x(t) to be band limited to fm Hz and also that Ts << 1/fm. Sketch the sampled signal's spectrum.
- 13. Write the equations for forward and inverse Laplace Transform
 - Find Laplace transform of x(t) = exp(|t|)
 - Determine the inverse Z transform $X(z) = \frac{4z^{-2}}{\left[1 \frac{1}{6}z^{-1}\right]^2}, |z| > \frac{1}{6}$
 - Find Z transform of $x[n] = a^{|n|}, a > 0$
- 17. Determine DTFT of $x[n] = a^n u[n]$

14.

15.

16.

- 18. Obtain the magnitude response of a DT system defined by the difference equation y[n] = x[n] 1/3 x[n-1]
- 19. Compare Z transformation with DTFT
- 20. Find inverse z-transform of $X(z) = \log(1+az^{-1}) \operatorname{ROC} |z| > a$

PART - B

 $(5 \times 12 = 60 \text{ MARKS})$

ANSWER ANY FIVE QUESTIONS

2

21. Determine whether the following systems are (1) memory- less (2) time-invariant (3) linear (4) causal and (5) stable
(a) y(t) = x(t/2)
(b) y(n) = x(-n)
(c) y(t) = x(t²)
(d) y(n) = n x(n)

- 22 a) Briefly explain about the following basic signals, unit step unit ramp, unit 6 impulse and exponential. Also derive the relationships between the first 3 basic signals mentioned above.
 - b) With the help of mathematical equations, briefly explain about classification 6 of CT signals namely periodic and aperiodic, energy and power, even and odd.
- 23. For a discrete time system described by the difference equation y[n] = 3x[n]-4x [n-1] + 3.5y [n-1]-1.5y [n-2], determine its frequency response and response to an input $x[n] = 2^{-n} u[n]$. Plot the magnitude response of the system.
- 24. State and prove sampling theorem
- 25. a) State and prove convolution in time and convolution in frequency properties 6 of Laplace transform
 - A system has the transfer function $H(s) = \frac{2}{s+3} + \frac{1}{s-2}$. Find the impulse response assuming the system is stable, and the system is causal

6

6

- 26. a) State and prove any 2 properties of the DTFT
 - b) State and prove any 2 properties of DFT

- 27. Determine the inverse Z transform of X(Z) = log(1-2Z), $|Z| < \frac{1}{2}$ by using the power series $log(1-x) = -\sum_{i=1}^{\infty} \frac{x^i}{i}$, |x| < 1 and by first differentiating X(Z) and then using this to recover x[n]
- 28. The input to a causal linear time invariant system is $x[n] = u[-n-1] + \left(\frac{1}{2}\right)^n u[n]$, the Z transform of the output of the system is

 $Y(Z) = \frac{-\frac{1}{2}Z^{-1}}{\left(1 - \frac{\vartheta I}{2}Z^{-1}\right)\left(1 + Z^{-1}\right)}.$ Determine H(Z), the Z transform of the impulse

response and also determine the output y[n].

*****THE END*****