ANNA UNIVERSITY COIMBATORE

B.E. / B.TECH. DEGREE EXAMINATIONS : MAY / JUNE 2010

REGULATIONS : 2007

FOURTH SEMESTER: ECE

070290013 - SIGNALS AND SYSTEMS
TIME : 3 Hours
Max.Marks : 100
PART - A
(20 $\times 2=40$ MARKS $)$

ANSWER ALL QUESTIONS

Verify whether $x(t)=A e^{-\alpha t} u(t)$ is a energy signal or not
Check whether the signal $x(t)=2 \cos 3 \pi t+7 \cos 9 t$ is periodic or not.
Prove that for the causal LSI system the impulse response $h[n]=0$, for $n<0$ Obtain the even and odd components of $x(t)=e^{-22} u(t)$

Find Fourier transform of $x(t)=\exp (-3|t-2|)$
Write Dirichlet conditions for the time Fourier transform.
State and prove time convolution property of the Laplace transform
Determine the Laplace transform of $x(t)=e^{-s \pi} \sin (\omega t) u(t)$
How periodic continuous signals are Fourier transformed?
A signal $x(t)$ is ideally sampled by a train of impulses occurring every T_{s} sec.
Considering the signal $x(t)$ to be band limited to $f_{m} H z$ and also that $T_{s} \ll 1 / f_{m}$. Sketch the sampled signal's spectrum.
State Nyquest sampling theorem.
What is aliasing effect?
Use Parsevar's theorem to evaluate $X=\int_{-\infty}^{\infty} \frac{6}{|j w+3|^{3}} d w$
Find Z transform of $x[n]=a^{|n|}, a>0$
15. The z-transform of a sequence $x(n)$ is $X(z)$, what is the z-transform of $n x(n)$?
form realization of this system.
The z-transform of a sequence $x[n]$ is $x(Z)=\left[z+2 z^{-2}+z^{-3}\right] /\left[1-3 z^{-4}+z^{-5}\right]$ If the region of Convergence includes the unit circle find the DTFT of $x[n]$ at $\omega=\pi$
20. Draw the block-diagram representation the following system
$y[n]-\frac{1}{2} y[n-1]=x[n]+\frac{1}{2} x[n-1]$

PART - B
($5 \times 12=60$ MARKS $)$

ANSWER ANY FIVE QUESTIONS

21. a For the, following signals (i) determine analytically which are periodic (if periodic, give the period) and (ii) sketch the signals.
(i) $x(t)=4 \cos (5 \pi t)$
(ii) $x(t)=4 \cos (5 \pi t-\pi / 4)$
b A trapezoidal puise $x(t)$ is defined by

$$
x(t)=\left\{\begin{array}{l}
5-t, 4 \leq t \leq 5 \\
1,-4 \leq t \leq 4 \\
t+5,-5 \leq t \leq-4
\end{array}\right.
$$

Determine total energy of $x(t)$ and sketch $x(2 t-3)$
a Obtain the Fourier series expansion of a half wave sine wave.
b Find the inverse Laplace transform of , $\frac{3 s^{2}+8 s-23}{(s+3)\left(s^{2}+2 s-10\right)}$
23. State and prove sampling theorem.
24. a State and prove any two properties of continuous time Fourier transform
b Using the properties of continuous time Fourier transform, determine the 6 time domain signal $x(t)$, if the frequency domain signal $X(j \omega)=j \frac{d}{d \omega}\left\{\frac{e^{j 2 \omega}}{1+i \omega / 3}\right\}$
25. a Find the DTFT of $\mathrm{x}[\mathrm{n}]=\mathrm{a}^{-\mathrm{n}} u[-n-1]$
b Use Parsavel's theorem for Fourier series to find the average power in the signal $x(t)=3 \sin ^{2}(2500 \pi t) \cos (2000 \pi t)$
26. An LTI system is descried by the differential equation $\frac{d^{2} y(t)}{d t^{2}}+3 \frac{d y(t)}{d t}+2 y(t)=x(t)$. Using Lapalce Transform, find total response if input is $x(t)=e^{-2 t}$ and the initial conditions are $y(0)=\frac{25}{18}$ and $y(0)=-\frac{2}{3}$

Find $H(Z)$ and obtain its pole zero diagram and show that the difference equation is $y[n]=x[n-1]-x[n-2]+1 / 2 y[n-1]$

$$
\begin{equation*}
y[n]-\frac{3}{4} y[n-1]+\frac{1}{8} y[n-2]=2 x[n] \tag{3}
\end{equation*}
$$

i. Determine the system function $H[Z]$
ii. Find output of the system when input $x[n]=\left(\frac{1}{4}\right)^{n} u[n]$
iii. Is the system stable?
iv. Draw block diagram realization of the system.

