Reg. No. : \square

Question Paper Code : 60445

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2016.

Third Semester
Electronics and Communication Engineering
EC 2204/EC 35/EC 1202 A/080290015/10144 EC 305 - SIGNALS AND SYSTEMS
(Common to Biomedical Engineering)
(Regulations 2008/2010)
Time : Three hours
Maximum : 100 marks
Answer ALL questions.
PART A - $(10 \times 2=20 \mathrm{marks})$

1. Define random signals.
2. What are the different types of representation of discrete-time signals?
3. State the Parseval's theorem for continuous-time Fourier series.
4. What is the condition for stability of a system?
5. Define transfer function with example.
6. Give the relationship of s -domain to z -domain transformation
7. State sampling theorem.
8. Find inverse z-transform for $\frac{1}{(z+0.1)}$.
9. What are the properties of convolution?
10. Find the z-transform of
(a) impulse
(b) unit step.

$$
\text { PART B }-(5 \times 16=80 \text { marks })
$$

11. (a) What are the different classifications of signals? Explain in detail about each classification.

Or
(b) Write short notes on :
(i) Unit step sequence
(ii) Unit ramp sequence
(iii) Exponential sequence
(iv) Impulse sequence.
12. (a) Derive the Fourier transform expressions for
(i) Rectangular pulse
(ii). Triangular pulse.

> Or
(b) Find the Laplace transform and ROC of the following signals.
(i) $\quad x(t)=e^{-b|t|}$
(ii) $x(t)=e^{-3 t} u(t)+e^{-2 t} u(t)$.
13. (a) Explain in detail about the block diagram representation of continuous time systems.

$$
\begin{equation*}
\mathrm{Or} \tag{16}
\end{equation*}
$$

(b) A linear time invariant system is characterised by the state equation

$$
\left[\begin{array}{l}
q_{1} \\
q_{2}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
q_{1} \\
q_{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u
$$

Where the u is a unit step function.
Compute the solution of the equation assuming initial condition as,

$$
Q(0)=\left[\begin{array}{l}
1 \tag{16}\\
0
\end{array}\right]
$$

14. (a) Find the discrete-time Fourier transform of the following
(i) $\quad x(n)=\{1,-1,2,2\}$
(ii) $x(n)=2^{n} u(n)$
(iii) $x(n)=(0.5)^{n} u(n)+2^{-n} u(-n-1)$.

Or

(b) Write the properties of z-transform. Explain in detail about complex convolution theorem and final value theorem.
15. (a) Determine the impulse response $h(n)$ for the system described by the second order difference equation

$$
\begin{equation*}
y(n)=0.6 y(n-1)-0.08 y(n-2)+x(n) \tag{16}
\end{equation*}
$$

Or
(b) Find the state variab1e matrices A, B, C and D for the input-output relation given by the following equation.

$$
\begin{equation*}
y(n)=6 y(n-1)+4 y(n-2)+x(n)+10 x(n-1)+12 x(n-2) \tag{16}
\end{equation*}
$$

