(b) The discrete Hilbert Transform is a process by which a signal's negative frequencies are phase-advanced by 90 degrees and the positive frequencies are phase-delayed by 90 degrees. Shifting the results of the Hilbert Transform (+j) and adding it to the original signal creates a complex signal as mentioned in the equation. If $m_i[n]$ is the Hilbert transform of $m_r[n]$, then : $m_c[n] = m_r[n] + jm_i[n]$. Apply the concept of Hilbert transform to generate and detect SSB-SC signal. (15)

	 	 -	 	1
Reg. No.:				ŀ

Question Paper Code: 52911

B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2019.

Fourth Semester

Electronics and Communication Engineering

EC 6402 — COMMUNICATION THEORY

(Regulation 2013)

(Common to PTEC 6402 – Communication Theory – For B.E. Part-Time Third Semester – Electronics and Communication Engineering – Regulation 2014)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A $-(10 \times 2 = 20 \text{ marks})$

- Suggest a modulation scheme for the broad cast video transmission and justify.
- 2. What are the advantages of converting low frequency signal in to high frequency signal?
- 3. A carrier signal is frequency modulated by a sinusoidal signal of 5 Vpp and 10 kHz. If the frequency deviation constant is 1 k Hz/V, determine the maximum frequency deviation and state whether the scheme is narrow band FM or wide band FM.
- 4. Draw the schematic of FM signal generation using phase modulator.
- 5. Relate independence and correlation between two random processes.
- 6. State Wiener Khintchine theorem.
- 7. What is preemphasis? Why it is needed?
- 8. Define threshold effect in AM systems.
- 9. State source coding theorem.
- 10. State Shanon law.

52911

PART B — $(5 \times 13 = 65 \text{ marks})$

- 11. (a) (i) Derive an expression for output voltage of a balanced modulator to generate DSB-SC and explain its working principle. (5)
 - (ii) Discuss the detection process of DSB-SC and SSB-SC using coherent detector. Analyze the drawback of the suggested methodology. (8)

Or

- (b) (i) Comment the choice of IF selection and image frequency elimination. (5)
 - (ii) Elucidate the working principle of super heterodyne receiver with the neat block diagram.
- 12. (a) Derive the expression for frequency spectrum of FM modulated signal and comment on the transmission bandwidth.

°Or

- (b) With relevant diagrams, explain how the frequency discriminator and PLL are used as frequency demodulators?
- 13. (a) (i) Two random processes $X(t) = A \cos(\omega t + \theta)$ and $Y(t) = A \sin(\omega t + \theta)$ where A and ω are constants and θ is uniformly distributed random variable in $(0, 2\pi)$. Find the cross correlation function. (5)
 - (ii) Explain in detail about the transmission of a random process through a linear time invariant filter. (8)

Or

- (b) (i) When is a random process said to be strict sense stationary (SSS), Wide sense stationary (WSS) and Ergodic process. (6)
 - (ii) Give a random process, $X(t) = A\cos(wt + \mu)$ where A and w are constants and μ is a uniform random variable. Show that X(t) is ergodic in both mean and auto correlation. (7)
- 14. (a) (i) Define noise and write notes on Shot noise, Thermal noise and White noise. (5)
 - (ii) Derive the figure of merit for AM system. Assume envelope detection. (8)

Or

(b) Explain the noise in FM receiver and calculate the figure of merit for a FM system. 15. (a) A DMS has six symbols $x_1, x_2, x_3, x_4, x_5, x_6$ with probability of emission 0.2, 0.3, 0.11, 0.16, 0.18, 0.05 encode the source with Huffman and Shannon – fano codes compare its efficiency. (13)

-0

- (b) (i) Derive the mutual information I(x;y) for a binary symmetric channel, when the probability of source is equally likely and the probability of channel p = 0.5. (6)
 - (ii) For a source emitting three symbols with probabilities $p(X) = \{1/8, 1/4, 5/8\}$ and p(Y/X) as given in the table, where X and Y represent the set of transmitted and received symbols respectively. H(X), H(X/Y) and H(Y/X). (7)

PART C — $(1 \times 15 = 15 \text{ marks})$

16. (a) (i) The AM signal $s(t) = A_c[1 + k_a m(t)]\cos(2\pi f_c t)$ is applied to the system shown in Fig.3. Assuming that $|k_a m(t)| < 1$ for all t and the message signal m(t) is limited to the interval $-W \le f \le W$ and that the carrier frequency $f_c > 2W$ show that m(t) can be obtained from the square-rooter output $v_3(t)$.

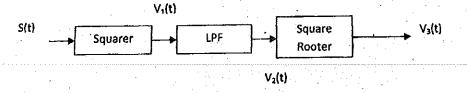


Fig. 3

Consider a square law detector, using a non linear device whose transfer characteristics is defined by $v_2(t) = a_1 v_1(t) + a_2 v_1^2(t)$ where a_1 and a_2 are constants, $v_1(t)$ is the input and $v_2(t)$ is the output. The input consists of the AM wave $v_1(t) = A_c[1 + k_a m(t)] \cos(2\pi f_c t)$.

- ii) Evaluate the output $v_2(t)$. (4)
- (iii) Find the conditions for which the message signal m(t) may be recovered from $v_2(t)$.

Or