and the second s							
Reg. No. :	,					`.	

Question Paper Code: 20413

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2018.

Fourth Semester

Electronics and Communication Engineering

EC 6403 — ELECTROMAGNETIC FIELDS

(Regulations 2013)

(Common to PTEC 6403 — Electromagnetic Fields for B.E. (Part-Time) Third Semester – Electronics and Communication Engineering – Regulations 2014)

Time: Three hours Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. State divergence theorem.
- 2. Specify the applications of Gauss law.
- 3. Define magneto static vector potential.
- 4. Mention the Laplace equation in electromagnetic field.
- 5. What is meant by Biot-Savart Law?
- 6. State stokes theorem.
- 7. Outline the Amperes law of force between current carrying conductors.
- 8. Determine the force and torque in terms of mutual inductance.
- 9. Relate electrostatic and Magneto static models.
- 10. Outline the fundamental postulate for Electromagnetic Induction.

PART B —
$$(5 \times 13 = 65 \text{ marks})$$

11. (a) Illustrate in detail about the coulomb's law in electric fields. (13)

 O_1

(b) Determine the electric field intensity of an infinitely long, straight line charge of a uniform density ρ in air. (13)

12.	(a)	Derive the boundary conditions for electrostatic fields. (13)
		\mathbf{Or}
	(b)	A parallel plate capacitor consists of two parallel conducting plates of area S separated by a uniform distance d . The space between the plates is filled with a dielectric of a constant permittivity, ϵ . Determine the capacitance. (13)
13.	(a)	An infinitely long, straight conductor with a circular cross section of radius b carries a steady current I. Determine the magnetic flux density both inside and outside the conductor. (13)
	· ·. ·.	\mathbf{Or}
	(b)	Derive the vector magnetic potential. (13)
[4 .	(a)	Find the inductance per unit length of a very long solenoid with air core having 'n' turns per unit length. (13)
•	1 1	\mathbf{Or}
	(b)	Determine the force per unit length between two infinitely long parallel conducting wires carrying currents I_1 and I_2 in the same direction. The wires are separated by a distance d . (13)
5.	(a)	Derive the integral form of Maxwell's equations. (13)
٠.		Or
	(b)	A circular loop of N turns of conducting wire lies in the xy-plane with its center at the origin of a magnetic field specified at the origin of a magnetic field specified by $B = a_z B_0 \cos(\pi r/2b) \sin \omega t$, where 'b' is the radius of the loop and ω is the angular frequency. Find the emf induced in the loop. (13)
÷ '.		PART C — $(1 \times 15 = 15 \text{ marks})$
6.	(a)	Express $3\cos\omega t - 4\sin\omega t$, as first (i) $A_1\cos(\omega t + \theta_1)$ and then (ii) $A_2\sin(\omega t + \theta_2)$. Determine A_1 , θ_1 , A_2 and θ_2 . (15)
٠.		\mathbf{Or}
<i>.</i>	(b)	A rectangular loop in the xy-plane with sides b_1 and b_2 carrying a current I lies in a uniform magnetic field $B = a_x B_x + a_y B_y + a_z B_z$.
- %		Determine the force and torque on the loop. (15)

12.