2	e	g		N	I	0	
_	-	0	۰.	-	-	-	-

Question Paper Code : 51449

B.E/B.Tech. DEGREE EXAMINATION, MAY/JUNE 2016

Fourth Semester

Electronics and Communication Engineering

EC 2253/EC 43/10144 EC 404/EC 1253/080290021 - ELECTROMAGNETIC FIELDS

(Regulations 2008/2010)

Time : Three Hours

Maximum: 100 Marks

Answer ALL questions. PART – A $(10 \times 2 = 20 \text{ Marks})$

- 1. Determine the gradient of the scalar field $F = 5r^2 + r \sin \theta$.
- 2. What is an electric dipole ? Write down the potential due to an electric dipole.
- 3. If the magnetic field $B = 25x\hat{i} + 12y\hat{j} + \alpha z \hat{k}$ (T), find α .
- 4. Write Biot-Savart law.
- Determine the capacitance of the parallel plate capacitor composed of tin foil sheets,
 25 cm square for plates separated through a glass dielectric 0.5 cm thick with relative permittivity of 6.
- 6. State point form of Ohm's law.
- 7. State Faraday's Law.
- 8. Define dissipation factor.
- 9. What is Uniform Plane Wave?
- 10. Define Brewster angle.

$PART - B (5 \times 16 = 80 Marks)$

11. (a)

(i) A point charge Q₁ = 300 μC located at (1, -1, -3) m experiences a force
 F₁ = 8a_x - 8a_y + a_z (N) due to point charge Q₂ at (3, -3, -2) m. Find the charge Q₂.

(ii) Given that $\vec{D} = \left(\frac{5r^2}{4}\right) \vec{a}_r$ (C / m²) in spherical coordinates, evaluate both

sides of divergence theorem for the volume enclosed by r = 4 m and $\theta = \frac{\pi}{4}$. (8)

OR

- (b) (i) Derive the expression for potential due to an electric dipole at any point P.
 Also find electric field intensity at the same point. (10)
 - (ii) Two point charges, 1.5 nC at (0, 0, 0.1) and -1.5 nC at (0, 0, -0.1) are in free space. Treat the two charges as a dipole at the origin and find potential at P(0.3, 0, 0.4).
- 12. (a) (i) Find the magnetic field at the centre of a square loop, which carries a steady current I, Let R be the distance from centre to side. Find the field at the centre of a n-sided polygon, carrying a steady current I. Again, let R be the distance from the centre to any side. Find the formula in the limit n (number of sides) tends to infinity.
 - (ii) Find the magnetic field a distance h above the center of a circular loop of radius R, which carries a steady current I.

OR

- (b) (i) Derive the Ampere's law. (8)
 - (ii) Derive the expressions which mutually relate current density J, Magnetic field B and Magnetic vector potential A. (8)
- 13. (a) Derive the boundary relations for
 - (i) E-field
 - (ii) H-field

OR

2

51449

(8)

(8)

(8)

(6)

(8)

(8)

- (b) A composite conductor of cylindrical cross section used in overhead line is made of a steel inner wire of radius "a" and an annular outer conductor of radius "b", the two having electrical contact. Evaluate the H-field within the conductors and the internal self – inductance per unit length of the composite conductor. (16)
- 14. (a) With necessary explanation, derive the Maxwell's equation in differential and integral forms. (16)

OR

1

- (b) (i) The conduction current flowing through a wire with conductivity $\sigma = 3 \times 10^7$ s/m and the relative permeability $\varepsilon_r = 1$ is given by $I_c = 3 \sin \omega t(mA)$. $\omega = 10^8$ rad/sec, find the displacement current. (8)
 - (ii) An electric field in a medium which is source free is given by $E = 1.5 \cos (10^8 t \beta z) \overline{a_r} V/m$. Find B, H and D. Assume $\varepsilon_r = 1$, $\mu_r = 1$, $\sigma = 0$. (8)
- 15. (a) (i) Derive Wave Equation from Maxwell's Equations.(8)(ii) Describe the concept of Plane Wave propagation in good conductors.(8)

OR

(b) Explain with relevant expressions, the concept of reflection of plane waves by a perfect dielectric at both normal and oblique incidence. (16)