Make the area of the state of t

Reg. No.:				T	T
6, 4,0,	<u> </u>		<u> </u>		

Question Paper Code: 52445

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2017 Fourth Semester

Electronics and Communication Engineering EC 2255 – CONTROL SYSTEMS (Regulations 2008)

[Common to PTEC 2255 – Control Systems for BE (Part-Time)
Fourth Semester – ECE – Regulations 2009]

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions

PART - A

 $(10\times2=20 \text{ Marks})$

- 1. Define transfer function.
- 2. List the advantages and disadvantages of feedback systems.
- 3. Define order of a system.
- 4. What are the standard test signals employed for time domain studies?
- 5. Define phase margin.
- 6. Write short notes on the correlation between the time and frequency response.
- 7. State Routh's criterion for stability.
- 8. The addition of a pole will make a system more stable. Justify your answer.
- 9. What is quantization?
- 10. What is controllability?

52445

PART - B

(5×16=80 Marks)

(16)

11. a) Find the Transfer Function Y(s)/X(s) using signal flow graph.

b) Reduce the Block Diagram shown below:

(OR)

12. a) Obtain the step response of a second order system and its time domain specifications for an under damped case.

(OR)

- b) Write notes on PI and PID controllers with neat sketches.
- 13. a) Draw the Bode diagram for the transfer function:

H(s) =
$$-100 \frac{s}{s^3 + 12s^2 + 21s + 10}$$
.
(OR)

- b) Explain the step by step procedure to design a lead compensator.
- 14. a) Sketch the root locus for the system defined by the transfer function G(s) = K/[s(s+4) (s+2)].

(OR)

- b) Plot the Nyquist diagram of the system $G(s) = 1/s(s + 2)^2$ and determine the gain margin.
- 15. a) Check for the observability and controllability of the given system.

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, C = \begin{bmatrix} 0 & 1 \end{bmatrix}$$

b) Obtain the general expression to obtain the transfer function from state equation and hence obtain the transfer function for the system

$$\mathbf{A} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \mathbf{C} = \begin{bmatrix} 0 & 1 \end{bmatrix}.$$