Reg. No. : \square

Question Paper Code : 27216

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015.

Fourth Semester
Electrical and Electronics Engineering
EE 6403 - DISCRETE TIME SYSTEMS AND SIGNAL PROCESSING
(Common to Instrumentation and Control Engineering, Electronics and Instrumentation Engineering
(Regulations 2013)
Time : Three hours
Maximum : 100 marks
Answer ALL questions.
PART A - ($10 \times 2=20$ marks $)$

1. Given a continuous signal $x(t)=2 \cos 300 \pi t$. What is the nyquist rate and fundamental frequency of the signal.
2. Determine $x(n)=u(n)$ is a power signal or an energy signal
3. What is ROC of Z transform? State its properties.
4. State initial and final value theorem of Z transform.
5. Calculate the percentage saving in calculation in a 256 point radix-2 FFT when Compared to direct FFT.
6. State circular frequency shift property of DFT.
7. Define pre-wraping effect? Why it is employed?
8. The impulse response of analog filter is given in figure 1. Let $h(n)=h_{a}(n T)$ where $\mathrm{T}=1$. Determine the system function

Fig. 1
9. What is the advantage of Harvard Architecture in a DS Processor?
10. How is a DS Processor applicable for motor control applications?

$$
\text { PART B }-(5 \times 16=80 \text { marks })
$$

11. (a) (i) Check the causality and stability of the systems $y(n)=x(-n)+x(n-2)+x(2 n-1)$.
(ii) Check the system for linearity and time variance $y(n)=(n-1) x(n)+C$.

Or

(b) (i) What is meant by energy and power signal? Determine whether the following signal are energy or power or neither energy nor power signals.
(1) $\quad x_{1}(n)=\left(\frac{1}{2}\right)^{n} u(n)$.

$$
\begin{equation*}
x_{2}(n)=\sin \left(\frac{\pi}{6} n\right) \tag{2}
\end{equation*}
$$

(ii) : State and prove the Sampling theorem
12. (a) (i) Find the Z transform and ROC of $x(n)=r^{n} \operatorname{con}(n \theta) u(n)$.
(ii) Find the inverse Z transform of $X(z)=\frac{z}{3 z 2-4 z+1} \mathrm{ROC}|Z|>1$.

> Or
(b) Using z-transform determine the response $y(n)$ for $n \geq 0$ if

$$
\begin{equation*}
y(n)=\left(\frac{1}{2}\right) y(n-1)+x(n), x(n)=\left(\frac{1}{3}\right)^{n} u(n) y(-1) \tag{16}
\end{equation*}
$$

13. (a) (i) The first five points of the eight point DFT of a real valued sequence are $(0.25,0,125-\mathrm{j} 0.3018,0,0.125-\mathrm{j} 0.0518$. Determine the remaining three points
(ii) Compute the eight point DFT of the sequence $\mathrm{x}=\{0,1,2,3,4,5,6,7\}$ using DIF FFT algorithm
(b) (i) Find the inverse DFT of

$$
\begin{equation*}
X(K)=\{7,-\sqrt{2}-j \sqrt{2,}-j, \sqrt{2}-j \sqrt{2,} 1, \sqrt{2}+j \sqrt{2}, j,-\sqrt{2}+j \sqrt{2}\} \tag{12}
\end{equation*}
$$

(ii) Using FFT algorithm compute the DFT of $x(n)=\{2,2,2,2\}$
14. (a) Design a Butterworth filter using the Impulse invariance method for the following specifications.

$$
\begin{array}{ll}
0.8 \leq\left|H\left(e^{j w}\right)\right| \leq 1 & 0 \leq \omega \leq 0.2 \pi \tag{16}\\
\left|H\left(e^{j \omega}\right)\right| \leq 0.2 & 0.6 \pi \leq \omega \leq \pi
\end{array}
$$

Or
(b) Design a filter with desired frequency response.

$$
\begin{align*}
H d\left(e^{j w}\right)=e^{-j 3 w} & \text { for } \frac{-3 \pi}{4} \leq \omega \leq \frac{3 \pi}{4} \\
=0 & \text { for } \frac{3 \pi}{4} \leq|\omega| \leq \pi \tag{16}
\end{align*}
$$

Using a Hanning window for $\mathrm{N}=7$.
15. (a) Explain the various addressing modes of a commercial DSP processor. (16)

Or

(b) With Suitable block diagram explain in detail about TMS320C54 DSP Processor and of its memory architecture.

