Mindallion

रिकार प्राप्ति । हार इन्हेंने स्थापन कर हुन करान्य है सुद्धा कर अन्तरकार के कार कि है , के अनु है कुछ है के क

i a mpakkan sebagai kasa kasa kasa kensaken kensak besa Berlangai pangai pangai pangai pangai pangai pangai p

on the all Geographics of Exercises open tree effects and the complete of the first and the

reference to the contrations of the filterial as properties out the superiors.

to the extragand his payment in the consequence of the consequence

- Turnanii fananii kariinii

Reg. No.:

Question Paper Code: 50443

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2017 Fifth Semester

Electronics and Communication Engineering EC 6501 – DIGITAL COMMUNICATION (Regulations 2013)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions

PART - A

(10×2=20 Marks)

- 1. Derive the expression for quantization noise of a PCM system.
- 2. In a PCM system the output of the transmitting quantizer is digital. Then why is it further encoded?
- 3. What is slope overload distortion in delta modulation systems?
- 4. Why Delta Modulation is superior to differential pulse code modulation?
- 5. What do the various autocorrelation coefficients represent in the power spectral density expression of a line code? Given the values of R10, R8, R50 and R200, arrange them in the increasing order.
- 6. State Nyquist second and third criteria to realize zero ISI.
- 7. Draw PSK and QPSK waveforms of the bit stream 10110001.
- 8. Differentiate between coherent and non coherent detection schemes.
- 9. What is meant by syndrome of linear block code?
- 10. Enumerate the various techniques/algorithms used in encoding and decoding of convolutional code.

(9)

1.0				
		PART – B	(5×13=65 Mar	rks)
11	a) i) Derive the expression	for signal to noise ratio of	uniform quantizer.	(10)
11.		Aliasing and Signal Recon		(3)
	ii) Show that the signal t system increases sign sample, Also determi	rithmic companding of specto noise power ratio of a un nificantly with increase in r one the signal to quantizati to 500t) which is quantized	iform quantizer is PCM number of bits per on noise ratio of an audi	(4)
	10 bit PCM.	ud element (N. LA almere A)		(9)
	a) With a neat block diagrams Modulation.	am, explain the operation o	of adaptive Delta	(13)
	(OR)	्र _{ा अनु} क्षिक्ष अस्तु क्षेत्रको सन्दर्भ अर्थ	polypola valorita esta (film)	, in the second
71	b) Explain a DPCM system of the system.	n, Derive the expression fo	r slope overload noise	(13)
13.	a) What is the need for line RZ and NRZ, line code a	e shaping of signals. Derivand compare their perform	ance	r (13)
1000 489	b) What is ISI? List the va	arious methods to remove prove Nyquist first criterio	ISI in s communication n for Zero ISI.	(13)
14.	a) i) Calculate the BER for principles.			(7)
	ii) Derive the expression	n for bit error probability of	QPSK system.	(6)
	-	and satisfied the same rate.		T
	b) i) Draw and explain the	Quadrature Receiver stru	icture for coherent QPS	ız. (4)
* * * * * * * * * * * * * * * * * * *	ii) Draw the signal spac	ce diagram of a coherent Q bability of error if the carri	PSK modulation schem er takes on one of four	e

equally spaced values 0°, 90°, 180° and 270°.

15. a) i) Find the (7, 4) systematic and non-systematic cyclic code words of the message word 1101. Assume the generator polynomial as $1 + x^2 + x^3$. (5)

ii) Obtain the code for an (n, k) linear cyclic code and explain its working. (8)
(OR)

b) Draw the code tree of a Convolutional code of code rate r=1/2 and constraint length of K=3 starting from state table and state diagram for an encoder which is commonly used. (13)

PART - C (1×15=15 Marks)

16. a) i) Explain Viterbi algorithm with an appropriate coder and a received input word of length 12. Assume a coder of constraint length 6 and rate

efficiency $\frac{1}{2}$.

ii) Explain the advantages of digital modulation technique. (5)

b) Explain the PSD of QAM and derive its BER. State the advantages of QAM. (15)