•	
•	2

Reg. No. :						

Question Paper Code: 40961

B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2018 Fifth Semester Electronics and Communication Engineering EC 6501 – DIGITAL COMMUNICATION (Regulations 2013)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions

PART - A

(10×2=20 Marks)

- 1. Define Band pass sampling.
- 2. In a PCM system, the output of the transmitting quantizer is digital. Then why is it further encoded?
- 3. What is meant by delta modulation systems?
- 4. Why Delta Modulation is superior to Differential Pulse Code Modulation?
- 5. What do the various autocorrelation coefficients represent in the power spectral density expression of a line code? Given the values of R10, R8, R50 and R200 and arrange them in the increasing order.
- 6. State Nyquist second and third criteria to realize zero ISI.
- 7. Draw PSK and QPSK waveforms of the bit stream 11110011.
- 8. Define non coherent detection schemes.
- 9. What is meant by syndrome of linear block code?
- 10. Write the various techniques/algorithms used in encoding and decoding of convolutional code.

PART - B

 $(5\times13=65 \text{ Marks})$

- 11. a) i) Derive the expression for signal to noise ratio of uniform quantizer.
 - ii) Write a detailed note on Aliasing and Signal Reconstruction. (6)

(OR)

	b) i)	A PCM system has a uniform quantizer followed by a v bit encoder. Show that the rms signal to noise ratio is approximately given by (1.8 + 6 v) dB,	/=\
		ii)	assuming a sinusoidal input. Show that the signal to noise power ratio of a uniform quantizer is PCM system increases significantly with increase in number of bits per sample. Also determine the signal to quantization noise ratio of an audio signal $S(t) = 4 \sin(2\pi 500t)$ which is quantized using a 10 bit PCM.	(7)(6)
12	i. a)) Ez M	xplain the construction features and working of Adaptive Delta lodulation. (OR)	(13)
	b)) E a	lucidate a DPCM system. Derive the expression for slope overload noise of	13)
13	. a)	W RZ	hat is the need for line shaping of Signals? Derive the PSD of a unipolar and NRZ, line code and compare their performance. (OR)	13)
	b)) W sy	hat is ISI and what are the various methods to remove ISI in communication	13)
14.	a)	i)	Calculate the BER for a Binary Phase Shift Keying modulation from first principles.	(7)
		ii)	D. 1 11	(6)
	b)	i) ii)	Draw and explain the Quadrature Receiver structure for coherent QPSK. Draw the signal space diagram of a coherent QPSK modulation scheme and also find the probability of error if the carrier takes on one of four	(6)(7)
15.				(7) (6)
		ii)	Explain Viterbi algorithm with an appropriate coder and a received input word of length 12. Assume a coder of constraint length 6 and rate efficiency ½. What is the need of Digital Modulations in digital communication?	(7)
	73.	estă;	Explain any one modulation scheme in detail.	(6)
1117		VL VI	PART - C (1×15=15 Mark	s)
16.	a)	Exp	plain about Pseudo noise sequences with examples and mention their portance.	
		<i>L</i>	(OR)	
	b)	Ex	plain in detail about digital hierarchy with examples.	