Reg. No.

Question Paper Code : 51459

B.E/B.Tech. DEGREE EXAMINATION, MAY/JUNE 2016

Fifth Semester

Electrical and Electronics Engineering

EC 2314/10144 EC 502/EC 2361/10133 EE 502 - DIGITAL SIGNAL PROCESSING

(Common to Electronics and Communication Engineering and Instrumentation and Control Engineering)

(Regulations 2008/2010)

Time : Three Hours

Maximum : 100 Marks

Answer ALL questions. PART – A $(10 \times 2 = 20 \text{ Marks})$

- 1. Define unit step function.
- 2. Compare energy and power signal.
- 3. State the initial value and final value theorem of Z transform.
- 4. Find the convolution of the following two sequences $x(n) = \{2, -1, 3\}$ and $h(n) = \{1, 2, 2.3\}$

1

- 5. Draw the basic butterfly diagram of radix 2 DIT and DIP FFT.
- 6. State Parsevals theorem of discrete Fourier transform.
- 7. Define group delay and phase delay of FIR filter.
- 8. What are the advantages of bilinear transformation ?
- 9. List out different stages in pipelining.
- 10. What are the different buses of TMS320 C5X?

11. (a) Explain the classification of discrete time system with suitable example. (16)

OR

(b) State and explain sampling theorem with necessary diagram. (16)

12. (a) (i) Find the impulse response and frequency response of the following System :

$$y(n) = \frac{1}{2}y(n-1) + x(n) + \frac{1}{3}x(n-1)$$
 (8)

(ii) Determine the circular convolution of the following sequences :

 $x(n) = \{1, 0.5, 1, 0.5, 1, 0.5, 1, 0.5, \}$

 $h(n) = \{0, 1, 2, 3\}$

OR

(b) Using long division method, determine the inverse Z transform of $X(Z) = 1/1 - (3/2) Z^{-1} + (1/2) Z^{-2}$

When ROC : |Z| > 1 and ROC : $|Z| < \frac{1}{2}$

13. (a) Compute 8 point DFT of the sequences using DIT-FFT algorithm

 $x(n) = \{0.2, 0.1, 0.2, 0.1, 0.2, 0.1, 0.2, 0.1\}$ (16)

OR

(b) State and prove all the properties of DFT.

2

(16) 51459

(8)

(16)

(a)

(a) Design a low pass filter of order 7 and cut off frequency of 1 rad/sec. Use rectangular window. Also plot the magnitude response of the filter. (16)

OR

(b) Design a digital butterworth filter satisfying the following specification : $0.707 \le |H(e^{jw})| \le 1; \quad 0 \le w \le \pi n/2$

 $|H(e^{jw})| \le 0.2; 3\pi/4 \le w \le \pi.$

Using bilinear transformation technique with T = 1 sec.

Write short notes on :

- (i) Multiplier and accumulator unit (8)
- (ii) Arithmetic Logic Unit (8)

OR

(b) Explain the different addressing modes of TMS320C5X with suitable examples. (16)

(16)