Reg. No. : $\square$

## Question Paper Code : 31235

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2013.

Sixth Semester
Electrical and Electronics Engineering 080280051 — DIGITAL SIGNAL PROCESSING
(Common to B.E. (Part-Time) Fifth Semester Electrical and Electronics Engineering)
(Regulation 2008)
Time : Three hours
Answer ALL questions.

$$
\text { PART A }-(10 \times 2=20 \text { marks })
$$

1. Mention the need for DSP.
2. Define Nyquist rate.
3. Give the Z transform of $x(n-m)$.
4. Find the Fourier transform of $x(n)=2^{n}, n=0, \pm 1, \pm 2, \ldots$.
5. Compute the DFT of $x(n)=\delta\left(n-n_{0}\right)$.
6. What is meant by radix -2 FFT?
7. Write two properties of Chebyshev filters.
8. State the conditions for FIR filters to have linear phase.
9. What does TMS and C stand for in TMS 320 C54 signal processing chip?
10. What is Harvard architecture?

$$
\text { PART B }-(5 \times 16=80 \text { marks })
$$

11. (a) (i) If a system is represented by the following difference equation, then determine whether it is linear, shift invariant, causal and stable. Explain the result.
$y(n)=3 y^{2}(n-1)-n x(n)+4 x(n-1)-x(n+1)$ for $n \geq 0$.
(ii) Describe quantization and quantization error.

$$
\mathrm{Or}
$$

(b) (i) Compute the convolution of

$$
\begin{array}{rlrrr}
x(n) & =n / 2 & & 0 \leq n \leq 5 & \\
& =0 & & \text { otherwise } &  \tag{8}\\
& =0 & \text { otherwise }
\end{array}
$$

(ii) Discuss in detail about aliasing effect and how can it be overcome.
12. (a) (i) Explain any three properties of $Z$ transforms in detail.
(ii) Find the inverse Z transform of
$\left(5-2 Z^{-1}+Z^{-2}\right) /\left[\left(1+Z^{-1}\right)^{2}\left(1-Z^{-1}\right)^{2}\right] \operatorname{ROC}|Z|>1$.

Or
(b) (i) Find the frequency response of the causal system $y(n)=0.5 x(n)+x(n-1)+0.5 x(n-2)$.
(ii) Find the convolution of $x(n)=3^{n} u(-n)$ and $h(n)=(1 / 3)^{n} u(n-2)$ using Fourier transform.
13. (a) (i) Find the IDFT of $X(k)=\{5,0,1-j, 0,1,0,1+j, 0\}$.
(ii) Explain any three properties of DFT.

Or
(b) (i) Compute the 4-point DFT of $x(n)=\{1,2,3,4\}$.
(ii) Explain Multi resolution Analysis in wavelet context.
14. (a) Design a Butterworth filter satisfying the constraints :

$$
\begin{array}{r}
0.75 \leq\left|H\left(e^{j \omega}\right)\right| \leq 1 \quad 0 \leq \omega \leq \pi / 2  \tag{16}\\
\left|H\left(e^{j \omega}\right)\right| \leq 0.2 \quad 3 \pi / 4 \leq \omega \leq \pi
\end{array}
$$

Or
(b) Using a rectangular window technique design a low-pass filter with pass band gain of unity, cutoff frequency of 1000 Hz and working at a sampling frequency of 5 kHz . The length of the impulse response should be 7 .
15. (a) Explain the architecture and special features of TMS 320 C54 signal processing chip.

## Or

(b) Mention any four DSP specific instructions used in DSP processor and explain it with an example.

