|           | 200  |         |        |             |           |                  |
|-----------|------|---------|--------|-------------|-----------|------------------|
| 1 10 0101 | 1211 |         | Etets. |             | etwe s    | Mar <sup>2</sup> |
| 1 188181  | #IRE | B       | 8131   |             | # 1 E 1 E | FEI              |
|           | HIRL | EHIII   | 11231  | at see      |           | 831              |
|           | BIRI | B T 111 | B ELLI | #1#H        | EU 17     | 8 B I            |
| 1100/41   |      | 84 HT   | E 1217 | mit figet i | H4116     | 4 B I            |



## Question Paper Code: 50444

## B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2017 Fifth/Sixth Semester

Electronics and Communication Engineering
EC6502 — PRINCIPLES OF DIGITAL SIGNAL PROCESSING
(Common to: B.E. Biomedical Engineering/Medical Electronics)
(Regulations 2013)

Time: Three Hours

Maximum: 100 Marks

## Answer ALL questions

PART - A:

 $(10\times2=20 \text{ Marks})$ 

- 1. What is twiddle factor?
- 2. State and prove periodicity property of DFT.
- 3. List the different types of filters based on frequency response.
- 4. What are the properties of bilinear transformation?
- 5. Write the steps involved in FIR filter design.
- 6. Draw the block diagram representation of FIR system.
- 7. Compare the fixed point and floating point number representations.
- 3. What is meant by finite word length effects in digital system?
- 9. Write the input output relationship for a decimator.
- 10. State the applications of adaptive filtering.

PART - B

(5×13=65 Marks)

11. a) Find the 8 point DFT of the sequence x(n) = { 2, 2, 2, 2, 1, 1, 1, 1 } using Decimation in Time FFT algorithm.

(OR)

b) Determine the circular convolution of the sequences  $x_1(n) = \{1, 2, 3, 1, 1, 2, 3, 1\}$  and  $x_2(n) = \{4, 3, 2, 2, 2, 2, 3, 4\}$  using DFT and IDFT.



5 - 12

12. a) Enumerate the steps for IIR filter design by impulse invariance with an example. 

(OR)

- b) Analyze the design of discrete time IIR filter from analog filter.
- 13. a) Design a FIR filter with the following desired specifications, using Hanning window with N = 5.

$$H_{d}(e^{j\omega}) = \begin{cases} 0, & -\frac{\pi}{4} \leq \omega \leq \frac{\pi}{4}, & \text{for each of the problem of t$$

(OR)

- b) Explain the design procedure of FIR filter using frequency sampling method.
- 14. a) Explain the quantization process and errors introduced due to quantization.

(OR)

b) i) Explain the characteristics of limit cycle oscillation with respect to the system described by the difference equation:

$$y(n) = 0.95 y(n-1) + x(n); x(n) = 0 \text{ and } y(-1) = 13.$$

ii) Define zero input limit cycle oscillation and explain.

15. a) How does the sampling rate increase by an integer factor I? Derive the input-output relationship in both time and frequency domains.

(OR)

b) Discuss in detail about any two applications of adaptive filtering with necessary diagrams.

$$PART - C$$

 $(1\times15=15 \text{ Marks})$ 

16. a) Obtain the direct form I, direct form II and cascade form realization of the following system function

$$y(n) = 0.1 y(n-1) + 0.2 y(n-2) + 3x(n) + 3.6x(n-1) + 0.6x(n-2).$$

(OR)

b) Convert the given analog transfer function  $H(s) = \frac{1}{s+a}$  into digital transfer function by impulse invariant method.