

					i			İ
Reg. No. :		1	1					İ
			1					L

Question Paper Code: 52450

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2017 Fifth Semester

Electronics and Communication Engineering EC2305 – TRANSMISSION LINES AND WAVE GUIDES (Regulations 2008)

[Common to PTEC2305 – Transmission Lines and Wave guides for BE (Part – Time) Fourth Semester – ECE – Regulations 2009]

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions

PART - A

(10×2=20 Marks)

- 1. What are the secondary constants of a line?
- 2. What are called constant-k filters?
- 3. What is the condition for a distortion less line?
- 4. Draw the input impedance pattern for a lossless line when short circuited.
- 5. What is the relationship between standing wave ratio and reflection coefficient?
- 6. What are the assumptions for the analysis of radio frequency line?
- 7. What are the dominant modes for TE and TM waves in parallel plane wave guide?
- 8. Write the expression for cutoff wavelength of the wave which is propagated in between two parallel planes.
- 9. Define Phase Velocity and Group Velocity.
- 10. What are the characteristics of TEM waves?

PART - B

 $(5\times16=80 \text{ Marks})$

11. a) Sketch the reactance curve of a constant-K low pass filter. Determine attenuation constant and phase constant in pass band and stop band plot it. (16)

(OR)

b) Design a m-derived low pass filter (T and π section) having a design resistance of $R_0 = 500 \Omega$ and the cut off frequency (f_c) of 1500 Hz and an infinite attenuation frequency (f_c) of 2000 Hz. (16)

(16)

(16)

12. a) Derive the general transmission line equations (with necessary diagrams) for voltage and current at any point on a line. (16)(OR) b) A generator of 1V, 1000 Hz supplies power to 1000Km long open wire line terminated in its characteristic impedance Z₀ and having the following parameters. R = 15 Ω , L = 0.004 H, C = 0.008 μ F, G = 0.5 μ mhos. Calculate the characteristic impedance, propagation constant and the phase velocity. (16)13. a) Antenna with impedance 40+j30 Ω is to be matched to a 100 Ω lossless line with a shorted stub. Determine the required stub admittance, distance between the stub, stub length and standing wave ratio on each ratio of the system using Smith chart. (16)(OR) b) A lossless transmission line with characteristic impedance $Z_0 = 300 \,\Omega$ is connected to a load Z_L = 120 - j60 Ω . Calculate input impedance (Z $_{\! in}\!$), standing wave ratio, I (Reflection coefficient) and input current. Given, length of the transmission line = 2 m, phase velocity (vp) = 2.5×108m/s, operating frequency (f) = 100 MHz, source impedance (Z_s) = 300 Ω and source voltage $(V_{g}) = 60V.$ (16)14. a) Obtain the field equations of Transverse Electric waves in parallel planes. (16)(OR) b) i) Design a symmetrical bridge T attenuator with an attenuation of 40 dB and impedance of 600Ω . (10)ii) Differentiate between attenuator and amplifier. List the practical applications of attenuators. (6)15. a) Derive the field equations of Transverse Electric waves travelling in Z direction

in a rectangular wave guide.

(OR)

b) Derive the resonant frequency of a rectangular resonator.