

,	 _	 E	 ~	-	 	 	
Reg. No.:							

Question Paper Code: 40963

B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2018 Fifth Semester

Electronics and Communication Engineering EC 6503 – TRANSMISSION LINES AND WAVE GUIDES (Regulations 2013)

Time: Three Hours

Maximum: 100 Marks

Use (smith chart is to be provided)

Answer ALL questions

PART - A

 $(10\times2=20 \text{ Marks})$

- 1. What is meant by distortion less line?
- 2. Define reflection loss.
- 3. What are assumption to simply the analysis of line performance at high frequencies?
- 4. Write the expression for the input impedance of open and short circuited, dissipation less line.
- 5. What is an impedance matching in stub?
- 6. What are the uses of smith chart?
- 7. What are the major draw backs of a constant k prototype filter?
- 8. Define propagation constant in a symmetrical network.
- 9. What is dominant mode?
- 10. What are the applications of cavity resonators?

PART – B

alli Made Gelek Malakka kali Marik Girgola Malaka ka mang adal ada 1997 mena

 $(5\times13=65 \text{ Marks})$

11. a) Derive the general transmission line equations for voltage and current at any point on a line. (13)

intercipes quintificant direc (OR) , and have a six observe out the energy consequent, trust dialogs in .

b) A communication line has L=3.67 mH/km, $G=0.08\times 10^{-6}$ T/km, C=0.0083 μ F/km and R=10.4 Ω /km. Determine the characteristic impedance, phase constant, velocity of propagation, wavelength, sending end current and receiving end current forgiven frequency f=1000 Hz, sending end voltage is 1 volt and transmission line length is 100 kilometers. (13)

(OR)

b) i) Explain the wave behaviour in a guiding structures.

ii) Explain why TEM waves does not exist in waveguides.

(10)

(5)