ANNA UNIVERSITY OF TECHNOLOGY, COIMBATORE

B.E. / B.TECH. DEGREE EXAMINATIONS : NOV / DEC 2011

REGULATIONS: 2008

FIFTH SEMESTER : ECE

080290031 - TRANSMISSION LINES AND WAVEGUIDES

Time: 3 Hours

Max.Marks: 100

PART - A

$(10 \times 2 = 20 \text{ MARKS})$

12.

ANSWER ALL QUESTIONS

- 1. Define characteristic impedance and propagation constant of transmission line.
- 2. What is the physical significance of an infinite line?
- 3. Write some applications of smithchart.
- 4. Distinguish between single stub and double stub matching.
- 5. What are guided waves?
- Plot the frequency Vs attenuation characteristic curve of TM and TE waves guided between parallel conducting plates
- 7. Write the expression for TE waves in rectangular guide
- 8. What is the dominant mode for the TE and TM waves in the rectangular waveguide?
- 9. What is the resonant frequency of a microwave resonator?
- 10. Distinguish between wave guide and cavity resonator.

PART - B

 $(5 \times 16 = 80 \text{ MARKS})$

ANSWER ALL QUESTIONS

11. a) Obtain the general solution for voltages and currents at any point on the transmission line.

(OR)

11. b) i) Derive the condition for distortion less line.

- ii. A cable has the following parameters. $R = 48.75 \Omega/km$ L = 1.09 mH/km $G = 38.75 \mu mhos/km$ $C = 0.059 \mu f/km$ Determine the characteristics impedance, propagation constant and wavelength for a source of f = 1600Hz and Es=1 volt.
- a) A load of (50 j 100) Ω is connected across a 50 Ω line. Design a short circuited stub to provide matching between the two at a signal frequency of 30 MHz using smith chart.

(OR)

- 12 . b) i. A 70 Ω line is used at a frequency where wavelength equals 80cm terminated by a load of140+j91 Ω . Find the reflection co-efficient and VSWR using smith chart.
 - ii . What is SWR? Derive SWR in terms of reflection co-efficient. (8)
- a) Derive the attenuation constant of TE waves in parallel plane waveguide.
 (OR)
- b) i. Derive the field components of TM waves between parallel plates
 propagating in z direction . (8)
 - ii. For a frequency of 6GHz and plane separation of 7cm, find cut-off frequency and phase velocity for TE₁₀ mode.
 (8)

(6)

(10)

(8)

14. a) A X band rectangular waveguide has inner dimensions of a = 2.3 cm, b = 1 cm. Calculate the cut-off frequency for the following modes. TE_{10} , TE₂₀, TM₁₁, TM₁₂. Also check which of the following modes propagate along the waveguide when the signal frequency is 10GHz. wave guide.

(OR)

14. b) i. TEM waves cannot exist in a single conductor - Justify using Maxwell's equation. (6)

ii. Derive the attenuation constant of TE waves in rectangular waveguide. (10)

- 15. a) i. Determine the solution of electric and magnetic fields of TM waves guided along circular waveguide. (8)
 - ii. Calculate the resonant frequency of a rectangular resonator with dimensions a=3cm, b=2cm and d=4cm if the operating mode is TE_{101} , (8) (OR)

15 b) Derive the Q factor of rectangular cavity resonator for TE₁₀₁ mode.

*****THE END*****

3