Reg. No.

Question Paper Code : 51456

B.E/B.Tech. DEGREE EXAMINATION, MAY/JUNE 2016

Fifth Semester

Electronics and Communication Engineering

EC 2305/EC 55/10144 EC504 - TRANSMISSION LINES AND WAVEGUIDES

(Regulations 2008/2010)

(Common to PTEC 2305 – Transmission Lines and Waveguides for B.E. (Part-Time) Fourth Semester Electronics and Communication Engineering – Regulations 2009)

Time : Three Hours

Maximum: 100 Marks

(Smith Chart is to be provided) Answer ALL questions.

$PART - A (10 \times 2 = 20 Marks)$

- 1. Design a T-type attenuator to operate into a load of 600 Ω with an attenuation of 60 dB.
- 2. Determine the value of capacitance required for a constant-K II-section low pass filter with a cutoff frequency of 2 kHz. The terminating load resistance is 600Ω .
- 3. A lossless transmission line has a shunt capacitance of 100 pF/m and a series inductance of 4 μ H/m. Calculate the characteristic impedance.
- 4. A transmission line has a characteristic impedance of 300 Ω and is terminated in a load of (150 + j 150) Ω . Calculate the reflection coefficient.

5. What is meant by a dissipationless line?

6. Mention the drawbacks of single stub matching.

7. What are the features of TEM waves ?

- 8. A wave is propagated in the dominant mode in a parallel plane waveguide. The frequency is 6 GHz and the plane separation is 4 cm. Calculate the cutoff wavelength and the wavelength in the waveguide.
- An air filled rectangular waveguide has a = 6 cm and b = 4 cm. The signal frequency is 3 GHz. Determine the cutoff frequency for TM₁₁ mode.
- 10. What are the commonly used guide terminations?

PART – B

Answer ALL questions $(5 \times 16 = 80 \text{ marks})$

11.	(a)	(i)	Describe the design and operation of constant-K band pass filter with neat	
			diagrams.	(8)
		(ii)	Design a band elimination filter (T-section) with cutoff frequencies of	
•			2 kHz and 6 kHz. The design impedance is 600 Ω .	(6)
		(iii)	Compare constant-K and m-derived filters.	(2)
			OR	
4	(b)	(i)	Explain the principle and operation of crystal filters with necessary	
			diagrams.	(8)
			N	

- (ii) Design a symmetrical lattice attenuator to have a characteristic impedance of 600Ω and attenuation of 20 dB. (6)
- (iii) Determine the value of 'm' required for an m-derived low pass filter having cutoff frequency of 1000 Hz and resonant frequency of 1100 Hz. (2)

2

- 12. (a) (i) Derive the transmission line equations and obtain expressions for the voltage and current on a transmission line. (10)
 - (ii) A telephone line has R = 6 Ω/km, L = 2.2 mH/km, C = 0.005 µF/km and G = 0.05 × 10⁻⁶ mho/km. Determine the characteristic impedance and propagation constant at 1 kHz.
 (6)

OR

- (b) (i) What are the types of waveform distortion introduced by a transmission line ? Derive the conditions for the distortionless operation of a transmission line. (12)
 - (ii) A telephone cable is 64 km long. This cable has $R = 13 \Omega$ /km and $C = 0.008 \mu$ F/km. Calculate the attenuation and phase constants at 1000 Hz and also the velocity of propagation. (4)
- 13. (a) (i) Derive expressions for the input impedance of open and short circuited lines operating at radio frequencies. (10)
 - (ii) A transmission line of 100 m long is terminated in a load of (100-j200) Ω.
 Determine the line impedance at 25 m from the load end at a frequency of 10 MHz. The characteristic impedance of the line is 100 Ω. Determine the input impedance using Smith chart.

OR

- (b)
- (i) Explain the principle and technique of single stub matching with necessary diagrams and expressions. (10)
 - (ii) A 300 Ω transmission line is connected to a load impedance of (450j600) Ω . Find the position and length of a short circuited stub required to match the line at a frequency of 10 MHz using Smith chart or relevant formula.

(6)

- 14. (a) (i) Explain the transmission of TM waves between parallel perfectly conducting planes with necessary expressions for the field components. (12)
 - (ii) Discuss the characteristics of TE and TEM waves between parallel planes. (4)

OR 000 molodes 201 x 20.0 = 0

- (b) (i) Discuss the transmission of TE waves between parallel perfectly conducting planes with necessary expressions for the field components. (12)
 - (ii) Write a brief note on wave velocities and impedances.
- 15. (a) (i) Describe the propagation of TM waves in a rectangular waveguide with necessary expressions for the field components. (12)
 - (ii) An air filled rectangular waveguide of dimensions a = 7cm and b = 3.5 cm operates in the dominant mode. Find the guide wavelength and phase velocity at a frequency of 3.5 GHz.

OR

- (b) (i) Discuss the principle of operation and applications of resonant cavities. (10)
 - (ii) Explain the excitation of various modes in rectangular cavities.

(4)

(4)

(6)