Reg. No. : \square

Question Paper Code : 11233

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2014.

Fifth Semester

Electrical and Electronics Engineering
080280038 - NETWORK ANALYSIS AND SYNTHESIS
(Common to 080280015 - Network Analysis and Synthesis for B.E. (Part - Time), Second Semester, Electrical and Electronics Engineering)
(Regulation 2008)
Time : Three hours
Maximum : 100 marks

Answer ALL questions.
PART A- $(10 \times 2=20 \mathrm{marks})$

1. Find the natural resonant frequency, $|\beta|$ of a series RLC circuit with $R=200 \Omega, L=0.1 H, C=5 \mu F$.
2. A charged capacitor C_{1} is connected to a series combination of R_{1} and C_{2} at $\mathrm{t}=0$ as shown below. Find the voltages $\mathrm{V}_{\mathrm{C} 1}$ and $\mathrm{V}_{\mathrm{C} 2}$ at $\mathrm{t}=0^{+}$if $R_{1}=0 \Omega$.

3. A phasor current $25 \angle 40^{\circ} \mathrm{A}$ has complex frequency $s=-2+j 3 s^{-1}$. What is the magnitude of $i(t)$ at $t=0.2 s$?
4. Find the average power in a resistor $R=10 \Omega$, if the current in Fourier series form is $i=10 \sin \omega t+5 \sin 3 \omega t+2 \sin 5 \omega t(A)$.
5. Find the z and y parameters if they exist for the two-port network shown below.

$$
1^{\prime}
$$

 2^{\prime}
6. Find the driving point admittance function for the network shown.

7. Define cut-off frequency and image impedance of a filter network.
8. What is constant k filter? Why it is called prototype filter section?
9. Test whether the polynomial $P(s)=s^{4}+3 s^{2}+2 s+12$ is Hurwitz.
10. Where will be the location of poles and zeros of an LC immittance function?

$$
\text { PART B }-(5 \times 16=80 \text { marks })
$$

11. (a) (i) In the circuit of Fig. 1, the switch has been in position 1 for sufficient time to establish steady-state conditions. The switch is then moved to position 2. Find the current transient and the energy dissipated in the resistors during the transient.

Fig. 1
(ii) A transient that increases from zero toward a positive steady-state magnitude is 49.5 at $t_{1}=5.0 \mathrm{~ms}$ and 120 at $t_{2}=20.0 \mathrm{~ms}$. Obtain the time constant τ.
(b) (i) A series $R C$ circuit with $R=100 \Omega$ and $C=25 \mu F$ has sinusoidal voltage $200 \sin 500 \mathrm{t}$ applied at $\mathrm{t}=0$. Find the expression for current. The initial charge on capacitor is zero.
(ii) A series RLC circuit with $R=100 \Omega, C=100 \mu F$ and $L=0.1 H$ has a constant voltage 200 V applied at $t=0$. Find the current transient, assuming zero initial charge on the capacitor.
12. (a) Find poles and zeros of $H(s)=10 /\left(s^{2}+2 s+26\right)$. Place them in the $s-$ domain and use the pole-zero plot to sketch $H(i \omega)$.

Or
(b) Find the Fourier series for the waveform shown in Fig. 2.

Fig. 2
13. (a) (i) Determine the open-circuit impedance parameters of the two-port network shown in Fig. 3.

Fig. 3
(ii) The two currents of a two-port network are
$I_{1}=2 V_{1}-V_{2}$
$I_{2}=-V_{1}+4 V_{2}$
What is the equivalent π-network?

Or

(b) (i) The following equation gives the voltage and current at the input port of a two-port network. Determine the transmission parameters.

$$
\begin{align*}
& V_{1}=5 V_{2}-3 I_{2} \tag{6}\\
& I_{1}=6 V_{2}-2 I_{2}
\end{align*}
$$

(ii) Determine the image parameters of the T network shown in Fig. 4.

Fig. 4
14. (a) (i) Obtain the characteristic impedance of the symmetrical T network shown in Fig. 5.

Fig. 5
(ii) Design a constant k low pass filter with a cut-off frequency of 1 kHz , and design impedance of 500Ω.

Or
(b) (i) Design a m-derived high pass filter with a cut-off frequency of 10 kHz , design impedance of 600Ω and $m=0.3$.
(ii) Design a k-type band pass filter with cut-off frequencies 1 kHz and 10 kHz and design impedance of 500Ω.
15. (a) (i) Test whether the following function is Positive real.

$$
\begin{equation*}
Z(s)=\frac{s^{2}+2 s+25}{(s+4)} \tag{6}
\end{equation*}
$$

(ii) Synthesize the following RC impedance function in Foster forms.(10)

$$
Z(s)=\frac{2(s+2)(s+4)}{(s+1)(s+3)}
$$

Or
(b) (i) Syntheize the following LC impedance function in Cauer II form. (8)

$$
Z(s)=\frac{s^{3}+2 s}{s^{4}+4 s^{2}+3}
$$

(ii) Synthesize the following RL impedance function in Cauer I form. (8)

$$
Z(s)=\frac{(s+1)(s+4)}{(s+5)(s+3)}
$$

