Reg. No. :

Question Paper Code : 11233

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2014.

Fifth Semester

Electrical and Electronics Engineering

080280038 - NETWORK ANALYSIS AND SYNTHESIS

(Common to 080280015 – Network Analysis and Synthesis for B.E. (Part – Time), Second Semester, Electrical and Electronics Engineering)

(Regulation 2008)

Time : Three hours

Maximum : 100 marks

Answer ALL questions.

PART A —
$$(10 \times 2 = 20 \text{ marks})$$

- 1. Find the natural resonant frequency, $|\beta|$ of a series RLC circuit with $R = 200 \Omega$, L = 0.1H, $C = 5 \mu F$.
- 2. A charged capacitor C₁ is connected to a series combination of R₁ and C₂ at t = 0 as shown below. Find the voltages V_{C1} and V_{C2} at $t = 0^+$ if $R_1 = 0 \Omega$.

- 3. A phasor current $25 \angle 40^{\circ}$ A has complex frequency $s = -2 + j3s^{-1}$. What is the magnitude of i(t) at t = 0.2s?
- 4. Find the average power in a resistor $R = 10 \Omega$, if the current in Fourier series form is $i = 10 \sin \omega t + 5 \sin 3\omega t + 2 \sin 5\omega t(A)$.

5. Find the z and y parameters if they exist for the two-port network shown below.

6. Find the driving point admittance function for the network shown.

- 7. Define cut-off frequency and image impedance of a filter network.
- 8. What is constant k filter? Why it is called prototype filter section?
- 9. Test whether the polynomial $P(s) = s^4 + 3s^2 + 2s + 12$ is Hurwitz.
- 10. Where will be the location of poles and zeros of an LC immittance function?

PART B —
$$(5 \times 16 = 80 \text{ marks})$$

11.

(a)

 (i) In the circuit of Fig. 1, the switch has been in position 1 for sufficient time to establish steady-state conditions. The switch is then moved to position 2. Find the current transient and the energy dissipated in the resistors during the transient. (10)

(ii) A transient that increases from zero toward a positive steady-state magnitude is 49.5 at $t_1 = 5.0ms$ and 120 at $t_2 = 20.0ms$. Obtain the time constant τ . (6)

- (b) (i) A series RC circuit with $R = 100 \Omega$ and $C = 25 \mu F$ has sinusoidal voltage 200 sin 500t applied at t = 0. Find the expression for current. The initial charge on capacitor is zero. (8)
 - (ii) A series RLC circuit with $R = 100 \Omega$, $C = 100 \mu F$ and L = 0.1H has a constant voltage 200 V applied at t = 0. Find the current transient, assuming zero initial charge on the capacitor. (8)
- 12. (a) Find poles and zeros of $H(s) = 10/(s^2 + 2s + 26)$. Place them in the sdomain and use the pole-zero plot to sketch $H(i\omega)$. (16)

Or

(b) Find the Fourier series for the waveform shown in Fig. 2.

13. (a) (i) Determine the open-circuit impedance parameters of the two-port network shown in Fig.3. (10)

(ii) The two currents of a two-port network are

 $I_1 = 2V_1 - V_2$ $I_2 = -V_1 + 4V_2$

What is the equivalent π – network?

(6)

(16)

Or

(b)

 (i) The following equation gives the voltage and current at the input port of a two-port network. Determine the transmission parameters.
(6)

> $V_1 = 5V_2 - 3I_2$ $I_1 = 6V_2 - 2I_2$

(ii) Determine the image parameters of the T network shown in Fig. 4.

(10)

Fig.4

14. (a) (i) Obtain the characteristic impedance of the symmetrical T network shown in Fig. 5. (8)

Fig.5

(ii) Design a constant k low pass filter with a cut-off frequency of 1 kHz, and design impedance of 500Ω.
(8)

Or

- (b) (i) Design a *m*-derived high pass filter with a cut-off frequency of 10 kHz, design impedance of 600 Ω and m = 0.3. (8)
 - (ii) Design a k-type band pass filter with cut-off frequencies 1 kHz and 10 kHz and design impedance of 500 Ω.
 (8)
- 15. (a)

(i)

 $Z(s) = \frac{s^2 + 2s + 25}{(s+4)}$

Test whether the following function is Positive real.

(ii) Synthesize the following RC impedance function in Foster forms.(10)

$$Z(s) = \frac{2(s+2)(s+4)}{(s+1)(s+3)}$$

Or

(b)

(i) Syntheize the following LC impedance function in Cauer II form. (8)

$$Z(s) = \frac{s^3 + 2s}{s^4 + 4s^2 + 3}$$

(ii) Synthesize the following RL impedance function in Cauer I form. (8)

$$Z(s) = \frac{(s+1)(s+4)}{(s+5)(s+3)}.$$

(6)

4