ANNA UNIVERSITY COIMBATORE

B.E. / B.TECH. DEGREE EXAMINATIONS : MAY / JUNE 2010

REGULATIONS : 2007

FOURTH SEMESTER : EEE

070280025 - NETWORK ANALYSIS AND SYNTHESIS

PART-A

($20 \times 2=40$ MARKS $)$

ANSWER ALL QUESTIONS

What are the advantages of using Laplace transforms?
State the final value theorem.
A DC voltage is applied to a series RL circuit by closing a switch. The voltage across L is 100 V at $t=0$ and drops to 13.5 V at $t=0.02 \mathrm{~s}$. If $L=0.1 \mathrm{H}$, find R.
4 4. A series RC circuit consists of resistor of 8Ω and capacitor of 0.33 uF is excited by a constant voltage of 30 V is applied to the circuit at $t=0$. Obtain the current equation.
What are shifted functions?
Give the significance of poles and zeros
List any three necessary conditions for Transfer functions
Define pole zero plot.
Define active and passive ports
Give the driving point impedence at port 1 with port 2 open
Express $A B C D$ parameters in terms of Y-parameters.
When is the network N^{\prime} a dual of network N ?
Define a neper
Give the formula for characteristic impedence of symmetrical T-Section

Give the plot for characteristic impedence with respect to frequency in case of constant K high pass filter
Define attenuation constant and phase constant
Give any 2 conditions for a polynomial to be Hutwitz
List the properties that function should satisfy to be a positive real function How Foster from II is realized

List any four properties of RC driving point impedance function.
PART - B
$(5 \times 12=60$ MARKS $)$

ANSWER ANY FIVE QUESTIONS

For the circuit shown in fig1, Determine the current in the 10Ω resistor when the switch is closed at $t=0$. The initial current in the circuit is zero but the initial current through the inductor is 0.1 A .

Fig 1.

The Transfer function of a system is $G(s)=(s+3) /\left[s\left(s^{2}+2\right)\right]$, determine the unit step and ramp function response.

Express z-parameters in terms of $A B C D$ parameters and h-parameters.

Determine the Z-parameter for the circuit shown in Fig 2.

Fig 2.

Design a constant k low pass T section filter having a cut-off frequency of 3 kHz and nominal characteristics impedance of $\mathrm{R}_{0}=600 \mathrm{Ohm}$

Prove that for a m-derived band pass filter $m=\sqrt{1-\left(\frac{f_{2}-f_{1}}{f_{\infty 2}-f_{\infty 1}}\right)^{2}}$

Synthesize the LC driving point impedance function
$Z(s)=(s+1) /\left(2 S^{2}+2 S+1\right)$ to get Cauer first and second forms and draw the network

Design a symmetrical lattice attenuator to have a characteristic impedance of 600Ω and attenuation of 40 dB
******THE END*******

