Reg. No.

Question Paper Code : 21463

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015.

Sixth Semester

Electronics and Communication Engineering

EC 2353/EC 63/10144 EC 604 - ANTENNAS AND WAVE PROPAGATION

(Regulations 2008/2010)

(Common to PTEC 2353 – Antennas and Wave Propagation for B.E. (Part – Time) Fifth Semester – Electronics and Communication Engineering – Regulations 2009)

Time : Three hours

Maximum : 100 marks

Answer ALL questions.

PART A —
$$(10 \times 2 = 20 \text{ marks})$$

- 1. What is the significance of gain of an antenna?
- 2. Define the brightness temperature of the antenna.
- 3. Give the importance of radiation resistance of an antenna.
- 4. Define Pattern Multiplication
- 5. The impedance of an infinitesimally thin $\lambda/2$ antenna (L = 0.5 λ and L/D = ∞) is 73 + j 42.5 Ω . Calculate the terminal impedance of an infinitesimally thin $\lambda/2$ slot antenna.
- 6. Draw the geometry for E-plane type of metal-plate lens antenna.
- 7. Calculate the radio horizon of a TV antenna placed at a height of 166m. If the receiver is at a distance of 66Km, what should be the height of the receiving antenna?
- 8. Write any four salient features of micro strip antenna.
- 9. Find the maximum distance that can be covered by a space wave, when the antenna heights are 60 m and 120 m.
- 10. A HF radio link is established for a range of 2000 Km. If the reflection region of the ionosphere is at a height of 200 Km and has f_c of 6 MHz, calculate MUF.

PART B — $(5 \times 16 = 80 \text{ marks})$

11. (a) Examine the effectiveness of the following parameters of an antenna : $(4 \times 4 = 16)^{-1}$

- (i) Beam solid angle
- (ii) Directivity
- (iii) Pattern Lobes
- (iv) Input impedance.

Or

(b) Define and describe the following parameters of an antenna : $(4 \times 4 = 16)$

- (i) Radiation pattern
- (ii) Polarization
- (iii) Bandwidth
- (iv) Effective aperture.
- 12. (a) A thin dipole is $\lambda/15$ long. If it has loss resistance of 1.5 Ohms, Calculate :

(i)	Directivity	(4)
(ii)	Gain	(3)
(iii)	Effective Aperture	(3)
(iv)	Beam Solid Angle	(3)
(v)	Radiation Resistance	(3)

Or

(b) Develop a treatise on following forms of arrays : $(4 \times 4 = 16)$

- (i) Linear array
- (ii) Two-element array
- (iii) Uniform array
- (iv) Binomial array.

13. (a) Discuss the construction of the rectangular Horn antenna and draw the measured E - and H-plane field patterns of rectangular horns as a function of flare angle and horn length. (16)

- (b) A square-corner reflector has a driven $\lambda/2$ element $\lambda/2$ from the corner. (4 × 4 = 16)
 - (i) Calculate and plot the far-field pattern in both principal planes.
 - (ii) What are the HBPWs in the two principal planes?
 - (iii) What is the terminal impedance of the driven element?
 - (iv) Calculate the directivity from impedances of driven and image dipoles. Assume perfectly conducting sheet reflectors of infinite extent.
- 14. (a) (i) With a suitable diagram, depict the construction and operation of a Yagi antenna. (8)
 - (ii) With a neat sketch design a quad-helix earth station antenna. Calculate the directivity and the effective aperture.
 (8)

Or

- (b) (i) Elaborate on Log-Periodic Antenna with a neat sketch. (10)
 - (ii) Design a Log-Periodic dipole array with 7 dBi gain and a 4 to 1 bandwidth. Specify apex angle α, scale constant k and the number of elements.
 (6)

15. (a) Evaluate the value of surface impedance if $\sigma = 5 \times 10^{-5}$, $\xi = 15$, $\mu = \mu_0$ at

 (i) 5 kHz
 (5)

 (ii) 50 kHz
 (5)

 (iii) 500 kHz.
 (6)

Or

(b) Derive the expressions for phase velocity and group velocity of sky waves.

(16)

3