Sense that are transfering and influence who make a some content is relative on a significant in a company of the frequency of the company of the

A more of statement and amounting stoughterisals on put appearing agencies of agen

The second an education of the appearance of the second

Reg. No.:	-					-	

Question Paper Code: 50448

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2017 Sixth Semester

Electronics and Communication Engineering EC 6602 - ANTENNA AND WAVE PROPAGATION (Regulations 2013)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions:

PART - A consider the constant of (10×2=20 Marks)

- 1. An antenna has a field pattern given by $E(\theta) = \cos^2(\theta)$ for $0^{\circ} \le \theta \le 90^{\circ}$. Find HPBW.
- 2. Differentiate Rádian and Steradian.
- 3. State Babinet's principle.
- 4. What are secondary antennas? Give two examples.
- 5. State pattern multiplication.
- 6. What is tapering of arrays?
- 7. For a 20 turn helical antenna operating at 3GHz with circumference $C=10\ cm$ and the spacing between the turns $0.3\,\lambda$, calculate the directivity and half-power beam width.
- 8. What is a frequency independent antenna?
- 9. The critical frequency for an ionised layer is 5 MHz. Determine the electron density of the layer.
- 10. Define skip distance.

(9)

PART - B

(5×16=80 Marks)

- 11. a) i) Draw a neat sketch of a 3 element Yagi-Uda antenna and explain its principle of operation. (12)
 - ii) Two half-wave vertical dipole antenna each with a gain of 1.64 are horizontally separated by a distance 100 km to form a transmitter receiver link. The transmitter feeds its antenna with 10 W at 100 MHz. Calculate the power received by the other antenna.

(OR)

- b) Derive the field equations for an oscillating dipole starting from Maxwells equations. Derive the expression for its radiation resistance.
- 12. a) i) Explain the principle of parabolic reflector antenna and discuss on different types of feed used with neat diagram. (12)
 - ii) The diameter of a parabolic reflector is 2m. For operation at 6GHz, find the beam width between first nulls and the gain.

 (4)

(OR)

- b) Write short notes on:
 - i) Slot antenna.

(8)

(4)

(16)

ii) Microstrip antenna.

(8)

13. a) Derive the expression for the array factor of a linear array of four isotropic element spaced $\frac{\lambda}{2}$ apart fed with signals of equal amplitude and phase. Obtain the directions of maxima and minima. (16)

(OR

- b) i) Explain in detail the Binomial array and derive an expression for the array factor. Also obtain the excitation coefficients of a seven element binomial array. (14)
 - ii) What is phased array?

(2)

14. a) Design a 50 to 200MHz log periodic dipole antenna for gain corresponds to scale factor 0.8 and space factor. 0.15. Assume the gap spacing at the smallest dipole is 3.6 mm. (16)

(OR)

- b) With a neat block diagram, explain the radiation pattern and gain of an antenna can be measured. (16)
- 15. a) Describe the structure of the atmosphere and specify the factors affecting the radio wave propagation. (16)

(OR)

- b) i) Discuss briefly on the types of fading. (7)
- ii) Obtain an expression for the refractive index of an ionospheric layer.