Reg. No. :
Question Paper Code : 20427
B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2018.
Seventh Semester
. Electronics and Communication Engineering
EC 6701 — RF AND MICROWAVE ENGINEERING
(Regulations 2013)
Time: Three hours Maximum: 100 marks
Answer ALL questions.
PART A — $(10 \times 2 = 20 \text{ marks})$
1. Give the X- band frequency range.
2. Define lossless network.
3. Define noise figure of a two port network.
4. Why is it necessary to go for microstrip line matching networks?
5. What is meant by phase shifter?
6. Draw the equivalent circuit of a Gunn diode.
7. How to minimize the lead inductance and inter electrode capacitance effects?
8. Distinguish between O-type and M-type tubes.
9. Compare thermistor and baretter.
10. Why direct microwave measuring instruments are not used in laboratory?
PART B — $(5 \times 13 = 65 \text{ marks})$
11. (a) Define scattering matrix. Explain the following properties of S-matrix
(i) Symmetry property
(ii) Unitary property (iii) Phase shift property. (13)
(13) Thase shift property.

(13)

Determine the transmission matrix of a two port network.

12.	(a)	(i)	Derive the equations for power gain, available power gain transducer power gain.	and (7)
•		(ii)	Analyze mathematically about amplifier stability.	(6)
			\mathbf{Or}	
	(b)	(i)	Illustrate the design of L-matching network using smith chart.	(7)
		(ii)	Explain constant VSWR circles.	(6)
13.	(a)	(i)	Explain the construction of Magic Tee and derive its S-matrix.	(6)
•		(ii)	Derive the scattering matrix for a directional coupler.	(7)
			\mathbf{Or}	•
	(b)	(i)	Describe the Gunn effect with the aid of two valley model theory	⁷ . (7)
		(ii)	Explain with neat diagrams the fabrication process of MMIC's.	(6)
14.	(a)	(i)	Draw the schematic of two cavity Klystron amplifier and exp the process of velocity modulation and bunching. Also derive equation of velocity modulation.	•
		(ii)	With neat diagram, explain how amplification of RF wav accomplished in Helix type TWT.	e is (5)
			\mathbf{Or}	. •
•	(b)	(i)	Draw the cross sectional view of Magnetron tube and explain process of bunching. Derive the expression for Hull cut off voltage	
•				(7)
•		(ii)	Compare TWT and Klystron.	(6)
15.	(a)	(i)	Draw the block diagram of a spectrum analyzer and explain working.	n its (6)
	1 4 ·	(ii)	With neat diagram, explain the measurement of frequency u slotted line technique.	sing (7)
		.**	\mathbf{Or}	
` .	(b)	(i)	With neat diagram, explain the Impedance measurement u Reflectometer.	sing (6)
		(ii)	With neat experimental set up, describe the dielectric cons measurement.	tant . (7)

PART C — $(1 \times 15 = 15 \text{ marks})$

16. (a) A two cavity Klystron amplifier has the following specifications: ' (15

Beam voltage, $V_0 = 900 \text{ V}$

Beam current, $I_0 = 30 \text{ mA}$

Frequency f = 8 GHz

Gap spacing in either cavity, d = 1 mm

Spacing between center of cavities, L = 4 cm

Effective shunt impedance, $R_{sh} = 49 \ \mathrm{K}\Omega$

Determine

- (i) Electron velocity
- ii) dc transit time of electron
- (iii) Maximum input voltage
- (iv) Voltage gain.

Or

(b) A slotted line is used to measure the frequency and it was found that the distance between the nulls is 1.85 cm. Given the guide dimension as 3 cm × 1.5 cm, calculate the frequency. (15)