Reg. No. :

Question Paper Code : 91421

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2014.

Seventh Semester

Electronics and Communication Engineering

EC 2403/EC 73/10144 EC 703 — RF AND MICROWAVE ENGINEERING

(Regulation 2008/2010)

(Common to PTEC 2403 – RF and Microwave Engineering for B.E. (Part-Time) Sixth Semester Electronics and Communication Engineering – Regulation 2009)

Time : Three hours

Maximum : 100 marks

Smith chart is to be provided.

Answer ALL questions.

PART A —
$$(10 \times 2 = 20 \text{ marks})$$

- 1. What are the high frequency limitations of conventional tubes?
- 2. Given $\begin{bmatrix} y \end{bmatrix} = \begin{bmatrix} 3.2 & 1 \\ 1 & 3.2 \end{bmatrix}$ find S parameters.
- 3. Define unilateral power gain.
- 4. State the significance of microstrip matching networks.
- 5. A 6dB attenuator is specified as having VSWR of 1.2. Assuming that the device is reciprocal, find the S parameters.
- 6. Mention the application of Gyrator and Isolator.
- 7. Write the necessary conditions for Gunn effect.
- 8. A Si Mw transistor has a maximum electric field intensity Em of $3 \times 10^5 V_{Cm}$ and its carrier has a drift velocity of $4 \times 10^6 Cm_S$. The emitter collector length is $4\mu m$. Find maximum possible transit time cut off frequency.
- 9. Compare two cavity klystron and traveling wave tube.
- 10. What is the significance of VSWR measurement?

PART B — $(5 \times 16 = 80 \text{ marks})$

- 11. (a) (i) Discuss the importance of low frequency and high frequency parameters of RF two port networks. (6)
 - (ii) The two port devices represented by the following matrices are cascaded. Find the scattering matrix of the resulting device. Determine its properties (symmetry, reciprocity, losses and match).

(1)	0.1 0.8	8		4	(5)
(2)	0.4 0.6	6]	1-		(5)
(2)	0.6 0.4	4			(0)

Or

12.

- (b) Verify the lossless and reciprocity properties of any two port network using scattering matrix. (16)
- (a) (i) With reference to RF transitor amplifier, discuss the considerations for stability and gain.
 (8)
 - (ii) Show that the noise figure of a three stage amplifier is $F = F_1 + \frac{F_2 - 1}{GA_1} + \frac{F_3 - 1}{GA_2}$ where F_1 , F_2 and F_3 are noise figures and GA_1 and GA_2 are power gains. (8)

Or

- (b) (i) Explain in detail the concept of T and Microstripline matching networks. (10)
 - (ii) Describe the Smith chart. How can it be used to determine an unknown impedence?

13. (a) (i) Explain the concept of N port scattering matrix representation. (6)

(ii) Discuss the properties of scattering matrix. Determine the scattering matrix representation of E plane Tee Junction. (10)

Or

- (b) (i) Explain the operating principle of a microwave circulator with neat schematic diagram. (8)
 - (ii) An air filled rectangular cavity resonator has dimensions of a = 5 cm, b = 2 cm and d = 15 cm. Compute the resonant frequency of the dominant mode for an air filled cavity. The resonant frequency of the dominant mode for a dielectric filled cavity of $\varepsilon_r = 2.56$. (8)

14. (a) With neat diagram, explain the construction and characteristics of tunnel diode. Compare tunnel diode and Gunndiode.

Or

- (b) (i). Discuss the working principles of parametric amplifier. (8)
 - (ii) Explain merits, demerits and application of parametric device. (8)
- 15. (a) Derive the equation of velocity modulated wave and discuss the concept of bunching effect in two cavity klystron.

Or

(b) (i) An X band pulsed cylinderical magnetron has the following operating parameters :

Anode voltage $V_0 = 26 \text{ kV}$

Beam current $I_0 = 27 A$

Magnetic flux density $B_0 = 0.336 \text{ Wb/m}^2$

Radius of cathode cylinder a = 5 cm

Radius of vane edge to center b = 10 cm.

Determine cyclotron angular frequency, cut off voltage for a fixed B_0 and cut off magnetic flux density for a fixed V_0 . (10)

(ii) Explain SWR measurement with neat block diagram. (6)