			T				,
	1						1
Daw Ma.	ı						
RAC NO '	1						
TOOK, ITO,					 		
Ç	1			1 1			

Maximum: 100 marks

Question Paper Code: 52928

B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2019.

Seventh/Eighth Semester

Electronics and Communication Engineering

EC 6703 – EMBEDDED AND REAL TIME SYSTEMS

Common to: B.E. Biomedical Engineering/Computer Science and Engineering/ Medical Electronics.

(Regulation 2013)

(Also Common to: PTEC 6703 – Embedded and Real Time Systems–Sixth Semester – Electronics and communication Engineering – Seventh Semester – Computer Science and Engineering (Regulation 2014))

Time: Three hours

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Compare the functions of CPU and Co-processor.
- 2. Define assembler.
- 3. What is meant by linking and loading?
- 4. Define embedded programming?
- 5. What is priority inheritance and priority inversion?
- 6. How does priority scheduling improve multitask execution?
- 7. Mention a power saving strategy adopted for real time systems.
- 8. Why is Benchmark Comparison done for new design?
- 9. List out the major components of audio player.
- 10. What is the need for video accelerator?

PART B — $(5 \times 13 = 65 \text{ marks})$

11.	(a)	Demonstrate the challenges and performance of embedded processes for real time system design. (13)	
		\mathbf{Or}	
	(b)	Analyze the preferrance of ARM processor Instruction set over CISC processes. (13)	
12.	(a)	Illustrate how of embedded system design is done using IDE (Integrated Development Environment). (13)	
		가 하게 되는 것이 되었다. 이 시간 사람들은 이 기를 가장하는 것이 되었다. 	
	(b)	Compare various program validation and testing methods done for system design. (13)	
13.	(a)	Discuss why preemptive scheduling is preferred in real time operating systems. (13)	· · · ·
		, North Marchael, North College Barton (1985) Marchael College (1985) Ann an Aire ann an Aire ann an Aire an A Tagailtíre ann an agus fhacach agus an Organis agus (1985) ann an Aire an Aire an Aire an Aire an Aire an Aire	
. s 	(b)	Demonstrate about inter process communication mechanisms. (13)	
14.	(a)	Analyze system design technique by giving specifications for a case study like a digital camera. (13)	
		\mathbf{Or}	
•	(b)	Illustrate why MPSoCs are preferred over general purpose microprocessor.	
		(13)	, ,
15.	(a)	Outline the design example telephone answering machine. (13)	
-		\mathbf{Or}	,
	(b)	Outline the design example of embedded control of Engine Control Unit. (13)	₹
		PART C — $(1 \times 15 = 15 \text{ marks})$	
16.	(a)	Evaluate the system design technique for large data analysis using video accelerator. (15)	
		\mathbf{Or}	•
	(b)	Design an alarm clock using embedded systems design techniques. (15)	. ,