Reg. No. :

Question Paper Code : 31296

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2013.

Eighth Semester

Electronics and Communication Engineering

080290073 — CELLULAR AND MOBILE COMMUNICATION

(Regulation 2008)

Time : Three hours

Maximum : 100 marks

10.5.13-AN

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

1. What is frequency reuse?

2. If a cellular operator is allocated 12.5 MHz for each simplex band, and if B_t is 12.5 MHz, B_{guard} is 10 KHz and B_C is 30KHz, find the number of channels available in an FDMA system.

(Bt - total spectrum, Bguard - Guard Band, Bc - Channel bandwidth)

- 3. Name the three basic propagation mechanisms.
- 4. Define fading.
- 5. What is the theoretical maximum data rate that can be supported in a 200 KHz channel for SNR = 10 dB, 30dB?
- 6. Find the 3-dB bandwidth for a Gaussian low pass filter used to produce 0.25 GMSK with a channel data rate of $R_b = 270 kbps$.
- 7. State the main advantage of ADPCM over PCM.
- 8. Give the expression for the rate of Vector Quantizer.

- 9. What mechanisms would cause breakdown in the reverse link of an IS-95 CDMA system as the number of users in a sector approaches the theoretical limit?
- 10. What is the reasons for choosing $\pi/4$ QPSK modulation scheme for USDC against DQPSK?

PART B —
$$(5 \times 16 = 80 \text{ marks})$$

- 11. (a) Discuss in detail about
 - (i) Frequency Hopped Multiple Access (8)
 - (ii) Spread Spectrum Multiple Access Techniques. (8)

Or

- (b) (i) Explain the techniques for improving coverage and capacity in cellular systems. (8)
 - (ii) With illustration, explain the handoff scenario at cell boundary. (8)
- 12. (a)
- (i) Derive the free space propagation model to predict the received signal strength. (10)
 - (ii) If a transmitter produces 50W of power, express the transmit power in units of dBm and dBW. If 50 W is applied to a unity gain antenna with a 900 MHz carrier frequency, find the received power in dBM at a free space distance of 100 m from the antenna. What is P_r (10 Km)? Assume unity gain for the receiver antenna. (6)

Or

(b)	(i)	Derive the two ray ground reflection model.	(10)
	(ii)	Write a note on knife edge diffraction model.	(6)
(a)	(i)	Derive the Nyquist criterion for ISI cancellation.	(8)
	(ii)	Explain the BPSK receiver with carrier recovery circuit.	(8)

Or

- (b) (i) Discuss in detail about Orthogonal Frequency Division Multiplexing. (8)
 - (ii) With block diagram explain the operation of a RAKE receiver. (8)

1

13.

- 14. (a) (i) Explain the uniform and nonuniform quantization techniques. (8)
 - (ii) With block diagram, explain the ADPCM encoder.

Or

- (b) Discuss in detail about Linear Predictive Coding and its types. (16)
- 15. (a) Explain in detail about the architecture, channels and Frame structure of GSM. (16)

Or

- (b) (i) Explain the forward CDMA channel and reverse CDMA channel. (8)
 - (ii) Explain the WCDMA layer architecture.

(8)

(8)