Question Paper Code: 40785

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2021.

Third Semester

Biomedical Engineering

MA 8352 — LINEAR ALGEBRA AND PARTIAL DIFFERENTIAL EQUATIONS

(Common to Computer and Communication Engineering/Electronics and Communication Engineering/Electronics and Telecommunication Engineering/ Medical Electronics)

(Regulations 2017)

Time: Three hours Maximum: 100 marks

Answer ALL questions.

PART A —
$$(10 \times 2 = 20 \text{ marks})$$

- 1. Let V_1 and V_2 be subspaces of a vector space V. Is $V_1 \cup V_2$ a subspace of V?
- 2. Define linear independence of vectors.
- 3. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by $T(a_1, a_2) = (2a_1 + a_2, a_1)$. Is T linear?
- 4. Define range of a linear transformation.
- 5. If $\langle x, y \rangle$ is an inner product on a vector space V, then $2\langle x, y \rangle$ can be an inner product on V?
- 6. Define norm.
- 7. Define singular solution of a partial differential equation.
- 8. Solve $\frac{y^2z}{x} p + xzq = y^2$.
- 9. State Dirichlet's conditions.
- 10. Write an example of two-dimensional heat equation.

PART B — $(5 \times 16 = 80 \text{ marks})$

- 11. (a) (i) Prove that any intersection of subspaces of a vector space V is a subspace of V. (8)
 - (ii) Prove that the span of any subset S of a vector space V is a subspace of V. (8)

Or

- (b) (i) Let V be a vector space and let $S_1 \subseteq S_2 \subseteq V$. If S_2 is linearly independent, then prove that S_1 is linearly independent. (8)
 - (ii) Let V be a vector space with dimension n. Prove that any linearly independent subset of V that contains exactly n vectors is a basis for V.
- 12. (a) State and prove 'Dimension theorem'. (16)

Or

- (b) (i) Find the eigen values and eigen vectors of the matrix $A = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{pmatrix}$. (8)
 - (ii) Reduce the matrix $A = \begin{pmatrix} -1 & 2 & -2 \\ 1 & 2 & 1 \\ -1 & -1 & 0 \end{pmatrix}$ to the diagonal form. (8)
- 13. (a) (i) Explain the Gram-Schmidt process. (8)
 - (ii) In \mathbb{R}^4 the set $\{(1,0,1,0),(1,1,1,1),(0,1,2,1)\}$ is linear independent. Using Gram-Schmidt process, obtain an orthonormal set. (8)

Or

- (b) (i) Let V be a finite dimensional inner product space over F, and $g:V\to F$ be a linear transformation. Then prove that there exists a unique vector $y\in V$ such that $g(x)=\langle x,y\rangle$ for all $x\in V$. (8)
 - (ii) Let $A = M_{m \times n}(F)$. Then prove that rank $(A * A) = \operatorname{rank}(A)$. (8)
- 14. (a) (i) Solve $x^2 p^2 + y^2 q^2 = z^2$ (4)
 - (ii) Solve $\frac{\partial^3 z}{\partial x^3} 2 \frac{\partial^3 z}{\partial x^2 \partial y} = 2e^{2x} + 3x^2 y$. (12)

Or

2 40785

(b) (i) Solve
$$(D^2 + 2DD' + D'^2 - 2D - 2D')z = \sin(x + 2y)$$
. (12)

(ii) Classify the partial differential equation

$$x^2 \frac{\partial^2 z}{\partial x^2} + \left(1 - y^2\right) \frac{\partial^2 z}{\partial y^2} = 0, -\infty < x < \infty, -1 < y < 1.$$
 (4)

15. (a) (i) Find the Fourier series of (8)

$$f(x) = \begin{cases} x^2 & \text{if } 0 \le x \le \pi \\ -x^2 & \text{if } -\pi \le x \le 0 \end{cases}$$

(ii) Using the method of separation of variables, solve the partial differential equation $\frac{\partial u}{\partial x} = 2\frac{\partial u}{\partial t} + u$ where $u(x, 0) = 6e^{-3x}$. (8)

Or

- (b) (i) A tightly stretched flexible string has its ends fixed at x=0 and x=l. At time t=0, the string is given a shape defined by $f(x)=\mu x(l-x)$, where μ is a constant, and then released. Find the displacement of any point x of the string at any time t>0. (8)
 - (ii) Solve the equation $\frac{\partial u}{\partial t} = \frac{\partial^2 y}{\partial x^2}$ with boundary conditions $u(x, 0) = 3\sin n \pi x$, u(0, t) = 0 and u(1, t) = 0, where 0 < x < 1, t > 0. (8)

3 **40785**