77 T.T	1 1	- 4		11			 		8	1
Reg. No.:		- 81	11	10					1	l .
1108.110.	1 1	- 4	- 3	10	9		 	S	Large manner	
_				Acres on the second		 	 	**********		*******

Question Paper Code: 70512

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2023.

Fourth Semester

Electronics and Communication Engineering

EC 8451 - ELECTROMAGNETIC FIELDS

(Common to Electronics and Telecommunication Engineering)

(Regulations 2017)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A —
$$(10 \times 2 = 20 \text{ marks})$$

- List the three co-ordinate systems.
- 2. State Stokes theorem.
- 3. State Coulomb's Law.
- 4. What is the relation between Electric Flux Density and Electric Field Intensity?
- Write two applications of Biot-Savart law.
- 6. State Ampere's circuital law.
- 7. State Faraday's law of electromagnetic induction.
- 8. What is displacement current?
- 9. Outline the importance of Poynting vector.
- 10. What is the intrinsic impedance of air?

PART B —
$$(5 \times 13 = 65 \text{ marks})$$

11. (a) Derive the electric field due to infinite line charge with charge density ρL . (13)

Or

(b) For a vector field A, show explicitly that $\nabla \cdot \nabla \times A = 0$ that is, the divergence of curl of any vector field is zero. (13)

12. (a) Explain boundary conditions for electric fields between conductor and free space. (13)

Or

- (b) A cylindrical capacitor consists of an inner conductor of radius 'a' and an outer conductor with inner radius 'b'. The space between the conductors is filled with a dielectric permittivity ε r and length of the capacitor is L. Find the value of the capacitance. (13)
- 13. (a) Using Biot-Savart's law, derive the magnetic field intensity on the axis of a circular loop of radius R carrying a steady current I. (13)

Or

- (b) Formulate the magnetic flux density around infinitely long straight conductor by magnetic vector potential. (13)
- 14. (a) Derive pointing vector in integral and point form from Maxwell's equation. (13)

Or

- (b) Derive displacement current from circuital analysis and from Ampere circuital law. (13)
- 15. (a) Derive the attenuation constant, phase constant, phase velocity and intrinsic impedance for free space, dielectric and perfect conductors. (13)

Or

(b) Find the refection and transmission coefficient of a plane wave in oblique incident at a boundary of two dielectric mediums. (13)

PART C —
$$(1 \times 15 = 15 \text{ marks})$$

16. (a) If the vector magnetic potential is given by

$$\vec{A} = \frac{10}{x^2 + y^2 + z^2} a_x$$
 Obtain the magnetic flux density in vector form. (15)

Or

(b) If
$$V = \left[2x^2y + 20z - \frac{4}{x^2 + y^2}\right]$$
 volts. Evaluate \vec{E} and \vec{D} at point $P(6, -2, 5, 3)$.