		19/07/22-FN
i		

Question Paper Code: 20471

B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2022.

Fourth Semester

Electronics and Communication Engineering

EC 8452 - ELECTRONIC CIRCUITS - II

(Common to: Electronics and Telecommunication Engineering)

(Regulations 2017)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A —
$$(10 \times 2 = 20 \text{ marks})$$

- 1. Define sensitivity and de-sensitivity of gain in feedback amplifiers.
- 2. Write the expression for input and output resistance of voltage series feedback amplifier.
- 3. If L1=2 mH, L2=4 mH and C=0.1 nF, Observe the frequency of oscillation for Hartley oscillator.
- 4. In an RC phase shift oscillator, if R1 = R2 = R3 = $200k\Omega$ and C1 = C2 = C3 = 100 pF. Detect the frequency of oscillations.
- 5. Illustrate the applications of tuned amplifiers.
- 6. Define unloaded and loaded Q of tank circuits.
- 7. Identify how the high pass RC circuit acts as a differentiator.
- 8. Compare Astable, Monostable and Bistable multivibrators.
- 9. Give the principle of operation of step-down DC-DC converter.
- 10. Compare Buck and Boost converter.

PART B — $(5 \times 13 = 65 \text{ marks})$

11. (a) Draw the block diagram of Voltage series feedback amplifiers and derive the expressions of input impedance R_{if} , output impedance R_{of} and gain.

Or

- (b) Build the circuit diagram of current shunt feedback amplifier and develop the expressions for $R_{\rm if}$ and $R_{\rm of}$.
- 12. (a) Demonstrate the working principle of RC phase shift oscillator circuit diagram also derive the expression for frequency of oscillation and condition for sustained oscillation.

Or

- (b) Estimate the frequency of oscillation and the condition for sustained oscillation of Colpitts oscillator with neat circuit diagram.
- 13. (a) Demonstrate a capacitance coupled single tuned amplifier circuit and derive the expressions for its important parameters.

Or

- (b) Conclude the following with neat circuit diagram:
 - (i) Hazeltine neutralization
 - (ii) Neutrodyne neutralization
- 14. (a) (i) Classify the various types of diode clampers
 - (ii) Demonstrate the diode clippers with appropriate diagrams and waveforms. (8)

Or

- (b) Illustrate the operation of collector coupled Astable multivibrator with neat diagrams and waveforms. (13)
- 15. (a) Summarize the transfer characteristic, signal waveforms, power dissipation, power conversion efficiency of Class A amplifier.

Or

(b) Illustrate the Buck converter with necessary diagrams and derive the expressions for voltage and current.

PART C — $(1 \times 15 = 15 \text{ marks})$

16. (a) Explain the gain of Wein bridge oscillator using BJT amplifier with necessary equations and diagrams.

 O_1

- (b) In a Colpitts oscillator, the values of the inductors and capacitors in the tank circuit are L = 40mH, C1 = 100pF and C2 = 500pF. Evaluating the following (15)
 - (i) Frequency of oscillations.
 - (ii) If the output voltage is 10v, find the feedback voltage.
 - (iii) Find the minimum gains if the frequency is changed by changing L alone.
 - (iv) Find the value of C1 for a gain of 10.
 - (v) Also find the new frequency.

(5)