01/	07/	22 -	AN.
An r			

	 		_		 	
Reg. No.:						

Question Paper Code: 20475

B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2022.

Fifth Semester

Electronics and Communication Engineering

EC8551 — COMMUNICATION NETWORKS

(Common to Electronics and Telecommunication Engineering)

(Regulations 2017)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Draw the Encoding pattern for token field used in IEEE 802.5.
- 2. Map the interconnecting devices to the OSI architecture.
- 3. A block of addresses is granted to a small organization. One of the address is 205.16.37.39/28. What is the first address in the black.
- 4. How is CSMA/CD effective in network communication?
- 5. What is meant by link local address?
- 6. Mention some of the inter-domain routing protocols
- 7. Differentiate UDP from TCP
- 8. What are the characteristics that a flow has to attain to meet QoS requirements?
- 9. Define non-repudiation.
- 10. Name a protocol that use a KDC for user authentication.

PART B — $(5 \times 13 = 65 \text{ marks})$

11. (a) Discuss about the functionalities of various layers in detail in OSI mode.

Or

- (b) List important functions of data link layer? Explain how flow and error control mechanisms are implemented.
- 12. (a) Classify various random-access protocols in detail and explain the responsibility of MAC Sub layer.

Or

- (b) Illustrate IPv4 protocol with a neat sketch of IP packet format and its addressing.
- 13. (a) What is meant by ARP and RARP? Explain how logical address and physical address are resolved in a network with an example.

Or

- (b) Explain how routing information protocol works in routers with a help of a suitable scenario.
- 14. (a) Interpret process to process delivery and explain the TCP protocol with a neat sketch of TCP segment format.

Or

- (b) Elucidate how TCP uses congestion control to avoid congestion or alleviate congestion in the network with a neat schematic diagram.
- 15. (a) State and brief about SNMP, the PDU format of SNMP and discuss how network is managed.

Or

(b) Describe the security services related to message/entity in detail

PART C — $(1 \times 15 = 15 \text{ marks})$

- 16. (a) Show the autonomous system with the following specifications:
 - i) There are eight networks (N1 to N8).
 - (ii) There are eight routers (R1 to R8).
 - (iii) N1, N2, N3, N4, N5, and N6 are Ethernet LANs.
 - (iv) N7 and N8 are point-to-point WANs.
 - (v) R1 connects N1 and N2.
 - (vi) R2 connects N1 and N7.
 - (vii) R3 connects N2 and N8.
 - (viii) R4 connects N7 and N6.
 - (ix) R5 connects N6 and N3.
 - (x) R6 connects N6 and N4.
 - (xi) R7 connects N6 and N5.
 - (xii) R8 connects N8 and N5.

Draw the graphical representation of the autonomous system described above as seen by open shortest pith first.

Or

- (b) An ISP is granted a block of addresses starting with 150.80.0.0/16. The ISP wants to distribute these blocks to 2600 customers as follows.
 - (i). The first group has 200 medium-size businesses; each needs 128 addresses.
 - (ii). The second group has 400 small businesses; each needs 16 addresses.
 - (iii). The third group has 2000 households; each needs 4 addresses.
 - (iv). Design the subblocks and give the slash notation for each subblock. Find out how many addresses are still available after these allocations.