Reg. No. :

## **Question Paper Code : 71874**

M.E. DEGREE EXAMINATION, JUNE/JULY 2013.

Second Semester

**Digital Signal Processing** 

VL 9253/10244 VLE 61/UVL 9151/VL 953 - VLSI SIGNAL PROCESSING

(Common to M.E. Applied Electronics and M.E. VLSI Design)

(Regulation 2009/2010)

Time : Three hours

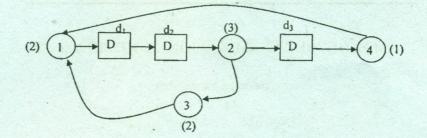
Maximum: 100 marks

Answer ALL questions.

PART A —  $(10 \times 2 = 20 \text{ marks})$ 

1. Give some examples of common DSP algorithms and their applications.

- 2. Distinguish between signal flow graph and Dependence graph with example.
- 3. Mention the properties of unfolding.
- 4. What are Rank order filters?
- 5. List the steps involved in computing modified Cook-Toom algorithm.
- 6. Obtain 3-level pipelined transfer function for  $H(z) = \frac{1}{1 az^{-1}}$ .
- 7. Define scaling and round- off noise.


8. Summarize the properties of Canonic Signed Digit representation.

9. What is sub-expression elimination process?

10. Define clock skew and propagation delay.

11. (a)

(i) Compute the iteration bound of the DFG given in figure 11 using LPM algorithm. (10)



## Figure 11

 (ii) Explain the various representations of DSP algorithms with suitable diagrams.
(6)

Or

- (b) (i) Compute the iteration bound of the DFG given in. figure.11 using MCM algorithm. (10)
  - (ii) Discuss pipelining and parallel processing in designing low power systems.
    (6)
- 12. (a) ' Unfold the DFG given in figure 12 (a) using unfolding factor of 3 and 4.

(16)

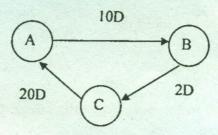



Figure 12 (a)

Or

- (b) (i) Describe the method of formulation of two parallel fast FIR filtering using polyphase decomposition. (8)
  - (ii) Design a parallel rank order filter for window size w=7 and block size L=6.Calculate the number of C and S units.
    (8)

13. (a) Construct a 2x2 convolution algorithm using Cook Toom algorithm with  $\beta = 0,1,2.$  (16)

Or

- (b) Consider the 1<sup>st</sup> order IIR filter with transfer function  $H(z) = \frac{1}{1-az^{-1}}$ . Derive the filter structure with 4-level pipelining and 3-level block processing. (16)
- 14. (a) (i) Compute the state covariance for the unscaled 2<sup>nd</sup> order filter given in figure 14 a (i). (8)

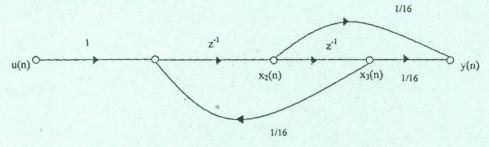



Figure 14 a (i)

(ii) Explain about the types of parallel multiplication with sign extension. (8)

- (b) (i) Briefly describe the design of lyon's bit serial multipliers using Horner's rule. (10)
  - (ii) Write short notes on Distributed Arithmetic operation. (6)
- 15. (a) (i) Demonstrate the process of reducing the hardware complexity using multiplicative splitting transformation on a transformation matrix

| -   | .4 | .1 | .4  | - |
|-----|----|----|-----|---|
| T = | .6 | .8 | .2  |   |
|     | .1 | .3 | .2_ |   |

 (ii) Explain row based and column based additive number splitting with example.
(8)

Or

- (b) (i) Explain wave pipelining and hence deduce an expression for the clock rate of the wave pipelined systems. (8)
  - (ii) Describe the concept of asynchronous pipelining and the protocol used between transmitter and receiver systems. (8)

(8)

Or