0	Reg.	No.
---	------	-----

M.E. DEGREE EXAMINATION, MAY/JUNE 2016

Second Semester

Applied Electronics

AP 7201 – ANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS

(Common to M.E. VLSI Design)

(Regulations 2013)

Time : Three Hours

2040110

Maximum : 100 Marks

Answer ALL questions. PART – A (10 × 2 = 20 Marks)

- Draw the circuit diagram of a source follower with a resistive load using N-channel MOSFETS.
- 2. Draw the small-signal equivalent circuit of the common gate stage.
- 3. State Miller effect.
- 4. Define Noise Bandwidth.
- 5. Draw a single stage amplifier with voltage shunt feedback.
- 6. Define slew rate.
- 7. Mention the different methods of Op-amp compensation techniques.
- 8. Define Gain margin (G_m) and Phase margin (P_m)
- 9. Derive for PTAT voltage with circuit diagram.
- 10. Draw a simple current mirror and write the expression for output current.

$PART - B (5 \times 16 = 80 Marks)$

11. (a) Draw a MOS Differential amplifier with active load and derive for A_d and A_c . (16)

OR

- (b) (i) Explain the common-source amplifier with source degeneration and derive its transconductance (G_m) and output resistance (R_o) (10)
 - (ii) Draw a cascade current source and derive its output impedance with equivalent circuit.
 (6)
- 12. (a) (i) Explain the statistical characteristic of Noise in single stage amplifier. (8)
 - (ii) Calculate the transfer function for a source follower with $C_{gs} = 7.33 \text{ pF}$, $C_{gd} = 0.1 \text{ pF}$, $C_{gb} = 0.05 \text{ pF}$, $C_{sb} = 0.5 \text{ pF}$, $k'W/L = 100 \text{ mA}/V^2$, $R_L = 2 \text{ k}\Omega$, $R_S = 190 \text{ k}\Omega$ and $I_D = 4 \text{ mA}$. Ignore the body effect, Assume $G_m = 28.2 \text{ mA/V}$, $C'_{gd} = 0.15 \text{ pF}$. (8)

DR

			OR	
	(b)	Der	ive for pole-zero frequencies of common gate stage with ideal current sou	irce
		as a	ctive load.	(16)
13.	(a)	(i)	Draw the basic amplifier without feedback and derive for its transfer g	ain
			using feedback concept and also write the expression for A_{Vf}	(8)
		(ii)	Explain the concept of gain boosting with an example.	(8)
			OR	
	(b)	(i)	Explain the methods of improving slew rate of op-amp.	(8)
		(ii)	Draw a one stage op-amp and give the circuit description. Also write	the
			expression for open loop gain.	(8)
1 4.	(a)	Draw two stage op-amp with miller's compensating capacitor with the		
		equi	valent circuit. Derive for its pole and zero frequencies.	(16)
			OR ACCEPTED TO SERVICE	
	(b)	Disc	cuss about multi-pole systems for stability in Phase margin.	(16)
15.	(a)	(i)	Explain constant G _M biasing circuit.	(8)
		(ii)	Draw a temperature independent biasing circuits using zener diode a	ind
			derive its temperature co-efficient.	(8)
			OR	
	(b)	(i)	Draw and explain cascade current mirror and derive for output current a	ind
			output resistance.	(10)
		(ii)	Describe the logical steps to build a Band gap reference voltage source.	(6)