Reg. No.

Question Paper Code : 57316

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2016

Fourth Semester Electrical and Electronics Engineering

EE6401 – ELECTRICAL MACHINES – I

(Regulations 2013)

Time : Three Hours

Maximum : 100 Marks

57316

4

Answer ALL questions. PART – A $(10 \times 2 = 20 \text{ Marks})$

1. State Ampere's Law.

2. Define Leakage Flux.

3. Define all day efficiency of a transformer.

4. What is Inrush current in a transformer?

5. Define Co-energy.

6. What is meant by winding inductance?

7. Compare Lap and Wave windings.

8. Draw various characteristics of D.C. shunt generator.

9. Draw speed-torque characteristics of DC series motor.

10. What is meant by Plugging?

		$PART - B (5 \times 16 = 80 \text{ Marks})$	
11.	(a)	Summarize the properties of magnetic materials.	(16)
		OR	
	(b)	Explain the Hysteresis and eddy current losses and obtain its expression.	(16)
12.	(a)	With a circuit explain how to obtain equivalent circuit by conducting O.C & S.C test in a single phase transformer.	(16)
		OR	
	(b)	Explain the various three phase transformer connection and parallel operation of three phase transformer.	(16)
13.	(a)	Obtain the expression for energy in a attracted armature relay magnetic system.	(16)
		OI : municedA OR	
	(b)	With an example explain the Multiple-excited magnetic field system.	(16)
14.	(a)	Explain the Armature Reaction in D.C machine.	(16)
		OR	
	(b)	(i) Obtain EMF equation of D.C. generator.	(8)
•		(ii) A 4-pole dc motor is lap-wound with 400 conductors. The pole-shoe is 20cm long and the average flux density over one-pole-pitch is 0.4T, the armature diameter being 30 cm. find the torque and gross-mechanical power developed when the motor is Drawing 25A and running at 1500	
		rpm.	(8)
15.	(a)	The no-load test of a 44.76 kW, 220-V, D.C. shunt motor gave the following figures :	
		Input current = 13.25 A; Field current = 2.55 A; Resistance of the armature at	

Input current = 13.25 A; Field current = 2.55 A; Resistance of the armature at $75^{\circ}C = 0.032\Omega$ and Brush drop = 2V. Estimate the full-load current and efficiency. (16)

OR

(b) Explain the method to obtain efficiency at full load by conducting Hopkinson's test. (16)