

		 	,	 ······································	
Reg. No.:					

Question Paper Code: 50482

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2017 Fourth Semester

Electrical and Electronics Engineering EE6402 – TRANSMISSION AND DISTRIBUTION (Regulations 2013)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions

PART - A

(10×2=20 Marks)

- 1. What is interconnected system?
- 2. What is the objectives of FACTS?
- 3. Why the concept of self GMD is not applicable for capacitance calculation?
- 4. What is transposition? Why are transmission line transposed?
- 5. How are transmission line classified?
- 6. What is Ferranti effect?
- 7. What is a belted-cable?
- 8. What are the desirable properties of insulator?
- 9. What are the major equipments of a substation?
- 10. Give the significance of a stringing chart.

PART - B

(5×13=65 Marks)

- 11. a) i) Draw and explain the structure of typical electrical power system with various voltage levels. (8)
 - ii) Draw and explain a simple model of UPFC.

(5)

(OR)

- b) i) Briefly discuss the technical advantageous of HVDC over HVAC transmission system.
 - ii) Explain the applications of HVDC transmission system.

(8) (5)

12.	a)	Derive the expression for calculating the internal and external flux linkages for a conductor carrying current. Use these expressions to derive the equation for the inductance of a single-phase transmission line.	(13)
		(OR)	(==)
	b)	Derive an expression for capacitance of a three-phase unsymmetrically spaced overhead line.	(13)
13.	a)	i) Draw the phasor diagram of a short transmission line and derive an expression for voltage regulation and transmission efficiency.	(7)
		ii) A three-phase transmission line having a series impedance of (20 + j30) Ω delivers 7 MW at 33 kV and 0.8 lagging power factor. Find the sending end voltage, regulation and power angle. Neglect shunt capacitance.	(6)
		(OR)	,
	b)	i) Deduce the expression for the sending end and receiving end power of a transmission line in terms of voltages and ABCD constants.	(7)
	j	i) Briefly explain the procedure of drawing receiving end power circle diagram.	(6)
14.	·	With neat diagram, explain the various methods of grading of underground cables. (OR) i) Discuss the constructional features of pin type insulators.	(13) (7)
	•	i) An insulator string consists of three units each having a safe working voltage of 15 kV. The ratio of self-capacitance to shunt capacitance is 6:1. Determine the line voltage and string efficiency.	(6)
15.	a)	i) Prove that a transmission line conductor between two supports at equal heights takes the form of a catenary.	(7)
	i	i) What is a sag-template? Explain how this is useful for location of towers and stringing of power conductors.	(6)
		(OR)	
	b)	Describe about the various methods of neutral grounding in detail.	(13)
		PART – C (1×15=15 Mar	ks)
16.	a)	Derive the expression of capacitance of a bundled conductor. (OR)	
	b)	Discuss the methods of voltage control in transmission line.	