TIME	ANNA UNIVERSITY COIMBATORE B.E. / B.TECH. DEGREE EXAMINATIONS : DECEMBER 2009 REGULATIONS - 2007 FOURTH SEMESTER - ECE 070290038 - TRANSMISSION LINES AND WAVEGUIDES :: 3 Hours Max.Marks : 100	17. 18.		A circular cylindrical air-filled cavity with radius 3 cm and length 10 cm is excited in TE_{11} mode having 3dB bandwidth of 2.5 MHz and resonant frequency 10.42 GHz. Find its Q. Why rectangular cavities or circular cavities can be used as microwave resonators? Show schematically how TM_{010} mode is excited in a circular cavity using	
	PART – A $(20 \times 2 = 40 \text{ MARKS})$ ANSWER ALL QUESTIONS	20.		rectangular waveguide. Define quality factor.	
1.	What is characteristic impedance of a transmission line?			PART - B	
2.	State the condition for distortionless line.			$(5 \times 12 = 60 \text{ MA})$	RKS)
3.	Define wavelength of a line. Give its expression.			ANSWER ANY FIVE QUESTIONS	
4.	Define reflection coefficient with its general expression.				
5.	What is transfer impedance?	21.		Derive the expression for voltage and current at any point on a transmission	
6.	What are the applications of Smith chart?			line.	
7. 8. 9.	Mention the assumptions to be made for an open-wire line at high frequency. Define Standing wave ratio. Sketch the standing waves on a dissipationless line having open-circuit	22.	,	Derive an expression for reflection factor on a line. Write short notes on Insertion loss.	6
10	termination.	23.	a)	Write short notes on Quarter wave line and its applications.	6
10.	Define wave impedance. What is dominant mode? Mention the dominant modes in rectangular		b)		6
12.	waveguide. Define phase velocity and group velocity.	24.		Explain the various applications of Smith Chart.	
14.	What are the characteristics of TEM waves? Define cutoff wavelength.	25.	a)	Derive the expression for attenuation constant of TE waves in between two parallel conducting planes.	8
15. 16.	Sketch the field distribution of TE ₁₀ mode in rectangular waveguide. Why TE waves are so called?		b)	Compare the characteristics of TE and TM waves.	4

Why TE waves are so called?

- Derive the expression for field components of TM waves in a rectangular waveguide.
- 27 Explain wave impedance of rectangular waveguide and derive the expression for wave impedance of TE, TM and TEM waves.
- 28. Derive an expression for unloaded quality factor Q of a rectangular cavity.

*****THE END*****