Reg. No.

Question Paper Code : 57450

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2016

Fifth Semester

Electrical and Electronics Engineering

IC 6501 – CONTROL SYSTEMS

(Common to Electronic and Instrumentation Engineering & Instrumentation and Control Engineering)

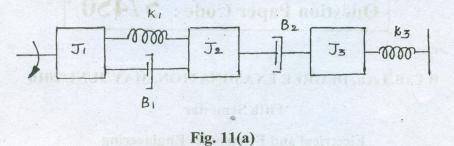
(Regulations 2013)

Time : Three Hours

Maximum : 100 Marks

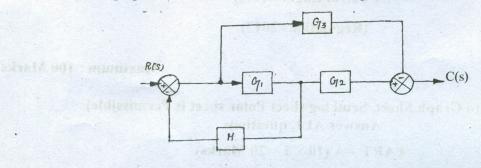
(Use to Graph Sheet, Semi log sheet Polar sheet is Permissible) Answer ALL questions.

 $PART - A (10 \times 2 = 20 Marks)$


1

- 1. What are the basic elements in control systems?
- 2. Define Synchros.
- 3. List the time domain specifications.
- 4. State the effect of PI-controller on the system performance.
- 5. Define phase and gain cross over frequencies.
- 6. What is Lag-Lead compensation ?
- 7. What is a characteristic equation ?
- 8. Define Nyquist stability criterion.
- 9. What is meant by state space?
- 10. When a system is said to be completely observable?

$PART - B (5 \times 16 = 80 Marks)$


11. (a) (i) Compare open and closed loop control systems.

(ii) Write the differential equations governing the mechanical rotational system as shown in Fig. 11(a). Draw the both electrical analogous circuits. (12)

OR

(b) (i) Convert the given block diagram shown in Fig. 11(b) (i) to signal flow graph for and determine the closed loop transfer function C(s)/R(s). (12)

Fig. 11(b) (i)

(ii) Differentiate DC and AC servo motor.

12. (a) Derive the time domain specifications of a second order system.

OR

(b) (i) For a Unity feedback control system, the open loop transfer function is given by

$$G(S) = \frac{10 (S+2)}{S^2 (S+1)}$$

- (1) Find the position, velocity and acceleration error co-efficients.
- (2) Also find the steady state error when the input is

$$R(S) = \frac{3}{S} - \frac{2}{s^2} + \frac{1}{3 s^3}$$
(12)

(ii) With a neat diagram explain the effect of PD controller in detail.

(4)

(4)

(16)

(4)

57450

2

 (a) Plot the Bode diagram for the following transfer function and determine the Phase and gain cross over frequencies.

$$G(S) = \frac{10}{S(1+0.4 S)(1+0.1S)}$$
(16)

OR

(b) The open loop transfer function of a unity feedback system is given by

$$G(S) = \frac{1}{S(1+S)^2}$$

13.

5

Sketch the polar plot and determine the gain and phase margin. (16)

14. (a) (i) Use R- H criterion to determine the location of the roots and stability for the system represented by Characteristic Equation

$$s^5 + 4s^4 + 8s^3 + 8s^2 + 7s + 4 = 0$$
(8)

(ii) Write the procedure for the design of Lag compensator using Bode plot. (8)

OR

(b) Draw the Nyquist plot for the system whose open loop transfer function

$$G(S) H(S) = \frac{K}{S(S+2) (S+10)}$$

Determine the range of K for which closed loop system is stable.

 15. (a) (i) With a neat block diagram, derive the state model and its equations of a

 Linear multi-input-multi-output system.

 (10)

3

57450

(16)

(ii) Consider the system defined by

$$X = Ax + BU$$
$$Y = Cx$$

Where

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix}; \mathbf{B} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}; \mathbf{C} = \begin{bmatrix} 10 & 5 & 1 \end{bmatrix}$$

Check the complete Controllability of the system.

OR

(b) (i) The state model of a system defined by

$$x = Ax + Bu$$

$$y = Cx$$

Where $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix}; B = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}; C = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$ (12)

Obtain the diagonal canonical form of the state model by a suitable transformation matrix.

(ii) Explain about the effect of state feedback.

(4)

(6)

() () () () () ()