Question Paper Code: 72004

B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2017.

Fifth Semester

Electrical and Electronics Engineering

IC 6501 — CONTROL SYSTEMS

(Common to Electronics and Instrumentation Engineering/Instrumentation and Control Engineering)

(Regulations 2013)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Why negative feedback is preferred in closed loop control system?
- 2. What is block diagram? State its components.
- 3. Define maximum peak overshoot.
- 4. Determine type and order of the following system $G(s)H(s) = 10/[S^3(S^2 + 2s + 1)]$
- 5. What is meant by frequency response?
- 6. State about Lead-Lag compensation.
- 7. What is characteristic equation?
- 8. State Nyquist stability criterion.
- 9. Draw the block diagram representation of a state model.
- 10. What is controllability?

11. (a) Write the differential equations governing the mechanical translational system shown in figure 1. Draw the electrical equivalent analogy circuits.

(16)

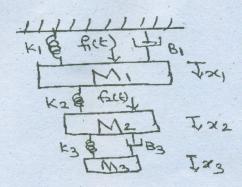


Figure.1.

Or

- (b) (i) With its operating principle derive the transfer function of AC servo motor in control system. (12)
 - (ii) Compare open loop and closed loop control systems. (4)
- 12. (a) Derive the time response of Undamped and Critically damped second order system for unit step input. (16)

Or

- (b) (i) A unity feedback control system has an open loop transfer Function G(s) = 10/[s(s+2)] Find the rise time, peak time, percentage overshoot and settling time for step input of 12 units. (8)
 - (ii) For servomechanisms, with open loop transfer function given below explain what type of input signal give rise to a steady state error and calculate their values.
 - (1) G(s) = [20(s+2)]/s(s+1)(s+3)]

(2)
$$G(s) = 10/[(s+2)(s+3)].$$
 (8)

13. (a) Plot the Bode plot for the following transfer function and determine the phase and gain cross over frequencies. G(s) = 10/[s(1+0.4s)(1+0.1s)]. (16)

Or

(b) The open loop function of a unity feedback system is given by G(s) = 1/[s(1+s)(1+2s)]. Sketch the polar plot and determine the gain and phase margin. (16)

- 14. (a) (i) Using Routh criterion, determine the stability of a system representing the characteristic equation $S^4 + 8S^3 + 18S^2 + 16S + 5 = 0$ Comment on location of the roots of the characteristics equation. (6)
 - (ii) Write down the procedure for designing Lag compensator using Bode plot. (10)

Or

- (b) Explain in detail the realization of Lag, Lead and Lag-Lead electrical networks. (16)
- 15. (a) Check the controllability and observability of the system whose state space representation is given as (16)

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 1 & -2 & 0 \\ 2 & 1 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 10 \\ 1 \\ 0 \end{bmatrix} u \quad y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Or

- (b) (i) What are state variables? Explain the state space formulation with its equation. (8)
 - (ii) Given that

$$A_{1} = \begin{bmatrix} \sigma & 0 \\ 0 & \sigma \end{bmatrix}; A_{2} \begin{bmatrix} 0 & w \\ -w & 0 \end{bmatrix}; A = \begin{bmatrix} \sigma & w \\ -w & \sigma \end{bmatrix}$$
 Compute state transistion matrix. (8)