٠.	Reg. No.:
	Question Paper Code: 53186
er a santa a - La santa a -	B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2019.
	Fifth Semester
	Instrumentation and Control Engineering
	IC 6501 — CONTROL SYSTEMS
	(Common to Electrical and Electronics Engineering/Electronics and Instrumentation Engineering/Instrumentation and Control Engineering)
	(Regulation 2013)
	(Also Common to PTIC 6501 — Control System for B.E. (Part-Time) for Third Semester — Instrumentation and Control Engineering – Regulations – 2014)
	Time: Three hours Maximum: 100 marks
	Answer ALL questions.
	PART A — $(10 \times 2 = 20 \text{ marks})$
	1. Mention the characteristics of negative feedback.
	2. Give the expression for masons gain formula.
	3. Identify the order and type for system having $G(s) = 1/s^3(s+1)$.
×	4. What is damping ratio?
· · · · · · · · · · · · · · · · · · ·	5. Differentiate between phase and gain cross over frequency.
	6. Outline the correlation between time and frequency response.
	7. Define Nyquist stability criterion.
	8. What is compensation?
•	9. Identify the elements involved to construct the state diagram.

10. Show the advantages of state space modeling.

PART B —
$$(5 \times 13 = 65 \text{ marks})$$

- 11. (a) (i) Explain in detail about the various elements of closed loop control system with an example. (10)
 - (ii) Give the reduction of serial and parallel blocks in block diagram representation of a system. (3)

Or

(b) Write the differential equations governing the mechanical system shown in below and determine the transfer function (13)

- 12. (a) (i) Derive the response of undamped second order system with unit step input (8)
 - (ii) Illustrate the time domain representation of various test inputs. (5)

Or

- (b) A unity feedback control system has an open loop transfer function $G(s) = \frac{K(s+9)}{s(s^2+4s+11)}$. Sketch the Root Locus. (13)
- 13. (a) Give the bode diagram for the following transfer function and obtain the system gain K for the gain cross over frequency 5 rad/sec. (13)

$$G(s) = \frac{Ks^2}{(1+0.2s)(1+0.02s)}.$$

 \mathbf{Or}

(b) The open loop transfer function of a unity feedback system is given by $G(s) = \frac{1}{s(1+s)(1+2s)}$. Given the polar plot and determine the gain margin and phase margin. (13)

14. (a) Specify the stability of the system whose characteristics equation is given by $s^7 + 9s^6 + 24s^5 + 24s^3 + 24s^2 + 23s + 15 = 0$. (13)

Or

- (b) Consider the unity feedback system whose open loop transfer function is $G(s) = \frac{K}{s(s+1)(s+5)}.$ Design a lead compensator to meet the following specifications. (i) Velocity error constant, $Kv \ge 80$. (ii) Phase margin is ≥ 20 degrees. (13)
- 15. (a) (i) Estimate the state model for a system whose transfer function is given below. (8)

$$\frac{Y(s)}{U(s)} = \frac{10}{s^3 + 4s^2 + 2s + 1}.$$

(ii) Identify the concepts of controllability and observability. (5)

Or

(b). Estimate the state model of the electrical network shown in below. (13)

PART C —
$$(1 \times 15 = 15 \text{ marks})$$

16. (a) A unity feedback control system is characterized by the following open lop transfer function $G(s) = \frac{0.4s + 1}{s(s + 0.6)}$. Determine c(t) for unit step input. Evaluate the maximum overshoot and the corresponding peak time. (15)

Or

Generate the Nyquist plot for the system whose open loop transfer function is $G(S) H(S) = \frac{K}{s(s+2)(s+10)}$. Determine the range of K for which closed loop system is stable. (15)