Reg.	No.
------	-----

Question Paper Code : 51509

B.E./B. Tech. DEGREE EXAMINATION, MAY/JUNE 2016

Sixth Semester

Electrical and Electronics Engineering

EE 2351/EE 61/10133 EE 601 – POWER SYSTEM ANALYSIS

(Regulations 2008/2010)

(Common to PTEE 2351/10133 EE 601 Power System Analysis for B.E. (Part-Time) Fourth Semester Electrical And Electronics Engineering Regulations 2009/2010)

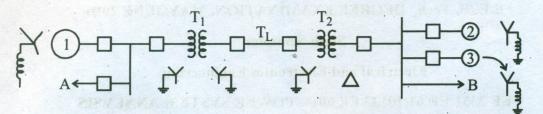
Time : Three Hours

Maximum : 100 Marks

Answer ALL questions. PART – A $(10 \times 2 = 20 \text{ Marks})$

- 1. Sketch the classic model of a synchronous generator.
- 2. State the limitation of formation of Y-bus by inspection method.
- 3. How the buses are classified in load flow analysis ?
- 4. Write the load flow equation for N R method.
- 5. Define subtransient reactance.
- 6. What do you mean by summetrical fault?
- 7. Identify the fault if $I_B = I_C = 0$, Va = 0.
- 8. Compute in polar form $a^2 1$, $1 a a^2$.
- 9. What are the assumptions made in equal area criterion ?
- 10. Why swing equation is non-linear?

0 0 0


$PART - B (5 \times 16 = 80 Marks)$

11.

 (a) Write the step by step method of formulating Y-bus matrix by singular transformation with suitable example.
 (16)

OR

(b) Obtain the per unit impedance diagram of the power system shown below :

Data :

Gen No. 1 : 30 MVA, 10.5 kV, $x'' = 1.6 \Omega$ Gen No. 2 : 15 MVA, 6.6 kV, $x'' = 1.2 \Omega$ Gen No. 3 : 25 MVA, 6.6 kV, $x'' = 0.56 \Omega$ $T_1 (3-\psi) : 15$ MVA, 33/11 kV, $x = 15.2 \Omega$ /ph on HT side $T_2 (3-\psi) : 15$ MVA, 33/6.2 kV, $x = 16 \Omega$ /ph on HT side

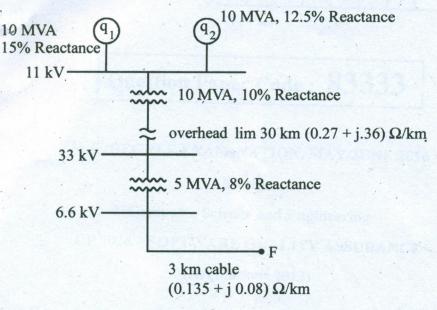
T.L: 20.5 Ω / ph

Load A : 15 MW, 11 kV, 0.9 lag p.f.

Load B : 40 MW, 6.6 kV, 0.85 lag p.f.

12. (a) Derive fast decoupled load flow algorithm and give the procedure for implementing this algorithm. (16)

OR


- (b) (i) Derive the static load flow equations for a n-bus system. (8)
 - (ii) Compare the performance of G S and N R method for load flow solutions using nodal admittance approach.

2

· (8) 51509

(16)

13. (a) For the radial network shown below a 3 - Ψ fault occurs at F. Determine the fault current and the line voltages at 11 kV bus under fault conditions. (16)

- (b) Give step by step algorithm for the analysis of three phase balanced fault in a power systems using Z-bus.
 (16)
- 14. (a) Derive the equation for average three phase power in terms of symmetrical components. Explain how the source impedance of the rotating machine can be determined. (16)

OR

- (b) Derive the necessary equation to determine the fault current for a L L G fault on an unloaded synchronous machines with a fault impedance Z_f. Also draw the interconnection of sequence networks.
 (16)
- 15. (a) (i) Discuss the importance of stability in power system design and operation. (8)
 - (ii) Derive the swing equation from the basic principles. State the assumptions made in deriving the equation.
 (8)

OR

 (b) Develop an algorithm and draw the flow chart for the solution of swing equation by modified Euler's method. (16)

3