# **Question Paper Code : 31216**

Reg. No. :

## B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015.

## Sixth Semester

Electrical and Electronics Engineering

## 080280055 - POWER SYSTEM ANALYSIS AND STABILITY

(Common to 080280049 – Power System Analysis and stability for B.E. (Part-time) Fifth Semester Electrical and Electronics Engineering)

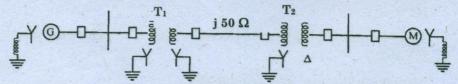
(Regulation 2008)

Time : Three hours

Maximum : 100 marks

Answer ALL questions.

## PART A — $(10 \times 2 = 20 \text{ marks})$


- 1. Differentiate steady state and transient state stability.
- 2. List any two advantages of per unit analysis.
- 3. Define primitive network.
- 4. Draw  $\pi$  equivalent circuit of transformer with off nominal tap ratio.
- 5. What is the need for slack bus in a power system?
- 6. Mention any two advantages of fast decoupled load flow method.
- 7. Write any four approximations made in short circuit studies.
- 8. What is meant by symmetrical components?
- 9. State any two merits of equal area criterion.
- 10. Write any four methods of improving steady state stability limit.

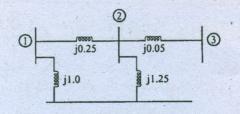
PART B —  $(5 \times 16 = 80 \text{ marks})$ 

- 11. (a) Write short notes on
  - Need for system analysis in planning and operation of power system.
     (8)
  - (ii) Load flow analysis.

Or

- (b)
- ) Draw the reactance diagram using base of 100 MVA, 220 kV in 50  $\Omega$  line.




Generator: 40 MVA, 25 kV, X'' = 20%Synchronous motor: 50 MVA, 11 kV, X'' = 23%Star-Star transformer: 40 MVA, 33/220 kV, X = 10%Star-delta transformer: 30 MVA, 11/220 kV, X = 10%.

(16)

(8)

12. (a) (i)

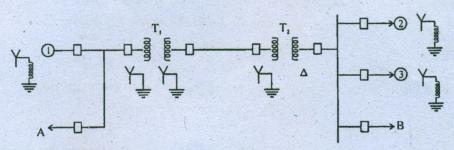
Find the bus impedance matrix for the system whose reactance diagram is shown in fig. All the impedances are in p.u. (8)



#### Reference bus

# Fig. 12 (a) (i)

(ii) Draw the network and find bus admittance matrix.
 Bus Code Line Impedance p.u. Line Charging Admittance p.u


| 1-2 | 0.2+j0.8  | j0.02 |
|-----|-----------|-------|
| 2-3 | 0.3+j0.9  | j0.03 |
| 2-4 | 0.25+j 1  | j0.04 |
| 3-4 | 0.2+j0.8  | j0.02 |
| 1-3 | 0.1 +j0.4 | j0.01 |
|     |           |       |

Or

(b) Obtain the p.u. impedance diagram of the power system shown below:

(16)

(8)



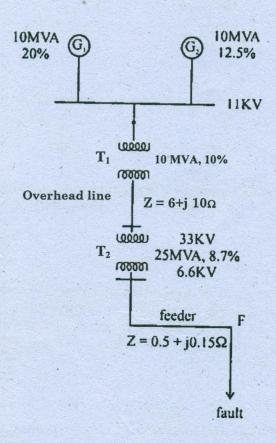
Generator No.1: 30 MVA, 10.5 kV, X" = 1.6 Ohm Generator No.2: 15 MVA, 6.6 kV, X" = 1.2 Ohm

Generator No.3: 25 MVA, 6.6 kV, X" = 0.56 Ohm

Transformer T1 (3phase) : 15 MVA, 33/11 kV, X = 15.2 Ohm per phase on HT side

Transformer T2 (3phase) : 15 MVA, 33/6.8 kV, X = 16 Ohm per phase on HT side

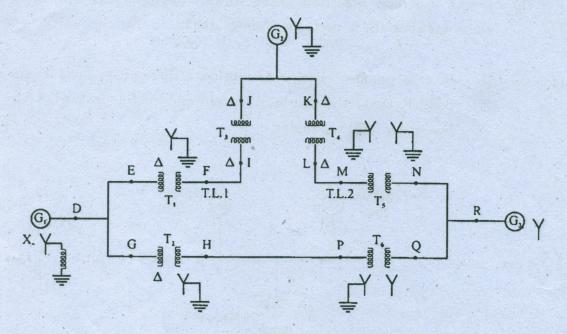
Transmission line: 20.5 Ohm/phase


Load A: 15 MW, 11 kV, 0.9 p.f. lagging

Load B: 40 MW, 6.6 kV, 0.85 p.f lagging

 13. (a) Derive load flow algorithm using Gauss - Seidel method with flow chart and discuss the advantages of the method. (16)

#### Or

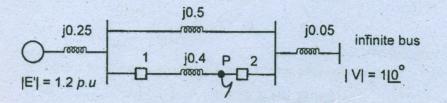

- (b) Derive load flow algorithm using Newton-Raphson method with flow chart and state the importance of the method. (16)
- 14. (a) (i) For the radial network shown below a three phase fault occurs at point F. Determine the fault current and the line voltage at 11 kV bus under fault conditions. (8)



(ii) Obtain the symmetrical components of a set of unbalanced currents  $I_{\alpha} = 1.6 < 25^{\circ}, I_{b} = 1.0 < 180^{\circ}, I_{c} = 0.9 < 132^{\circ}.$  (8)

3

- (b) (i) Derive the expression for fault current in double line to ground fault on unloaded generator. Draw an equivalent network showing the inter connection of networks. (10)
  - (ii) Draw the zero sequence diagram from the system whose one line diagram is shown below.
    (6)




(a) Derive the swing equation of a synchronous machine swinging against an infinite bus. Clearly state the assumptions in deducing the swing equation.

#### Or

15.

(b) A three phase fault is applied at the point P as shown in Fig. Find the critical clearing angle for clearing the fault with simultaneous opening of the breakers 1 and 2. The reactance values of various components are indicated in the diagram. The generator is delivering 1 p.u power at the instant proceeding the fault. (16)



4