|                | Question Paper Code: 80133                                                      |
|----------------|---------------------------------------------------------------------------------|
|                |                                                                                 |
|                | B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2019.                               |
|                | Fourth Semester                                                                 |
|                | Electrical and Electronics Engineering                                          |
|                | EE 8403 — MEASUREMENTS AND INSTRUMENTATION                                      |
|                | (Regulation 2017)                                                               |
| Ti             | me : Three hours Maximum : 100 marks                                            |
|                | Answer ALL questions.                                                           |
| :              | Amewer ADD questions:                                                           |
|                | $PART A - (10 \times 2 = 20 \text{ marks})$                                     |
| 1.             | Differentiate Accuracy and Precision.                                           |
| 2.             | Distinguish between Gravity control and Spring control.                         |
| 3.             | Specify the use of copper shading bands. Where is it placed in the energymeter? |
| 4.             | How the flux density is measured?                                               |
| _ <del>5</del> | How Maxwell's bridge differ from Anderson bridge, although both are used for    |
|                | measuring inductance?                                                           |
| 6.             | Specify the purpose of Wagner earthing device.                                  |
| 7.             | Mention the use of Lissajous patterns.                                          |
| •              | are the tile of the ajous patterns.                                             |
| 8.             | Specify the application of data loggers.                                        |
| 9.             | Mention the electrical phenomena used in transducers.                           |
| 10.            | List the elements of DAQ system.                                                |

Reg. No.:

## PART B — $(5 \times 13 = 65 \text{ marks})$

11. (a) Explicate the static and dynamic characteristics of an instrumentation system.

Oı

- (b) Elaborate the working of Moving iron instrument and derive the torque equation of the Moving iron instrument.
- 12. (a) State Blondel's theorem and explain how the power measurement using two wattmeter method.

O<sub>1</sub>

- (b) Describe the step by process involved in determination of B-H curve and hysteresis loop.
- 13. '(a) Derive the expressions for measurement of unknown capacitance with a neat bridge circuit.

Or

- (b) Derive the expressions for measurement of unknown inductance using Hays bridge.
- 14. (a) Explain in detail about the various types of Recorders.

Oı

- (b) Explain in detail about the LED and LCD displays.
- 15. (a) Elaborate the types of resistive and inductive transducers used for measuring pressure.

-Or

(b) Elucidate the elements of data acquisition system.

PART C —  $(1 \times 15 = 15 \text{ marks})$ 

16. (a) A sinusoidal alternating voltage of amplitude, 100-V is applied across a circuit containing a rectifying device which entirely prevents current from flowing in one direction and offers a non-inductive resistance of 10 ohm to the flow of current in the other direction. Find the reading on (i) a hot wire, (ii) a moving coil ammeter in the circuit.

)r

(b) A Maxwell's capacitance bridge shown in. Fig. 1 is used to measure an unknown inductance in comparison with capacitance. The various values at balance:  $R_2 = 400$  ohm;  $R_3 = 600$  ohm;  $R_4 = 1000$  ohm;  $C_4 = 0.5$   $\mu F$ .

Calculate the values of  $R_1$  and  $L_1$ . Calculate also the value of storage Q factor of the coil if frequency is 1000 Hz.



Fig. 1