Reg. No. \square

Question Paper Code : 13656

M.E. DEGREE EXAMINATION, JANUARY 2015.

First Semester

Power Systems Engineering

MA 7163 - APPLIED MATHEMATICS FOR ELECTRICAL ENGINEERS

(Common to M.E. Power Electronics"and Drives, M.E. Control and Instrumentation Engineering, M.E. Embedded System Technologies and M.E. Electrical Drives and Embedded Control)
(Regulation 2013)
Time : Three hours
Maximum : 100 marks
Answer ALL questions.
PART A - $(10 \times 2=20$ marks $)$

1. Define canonical basis of a matrix.
2. What are the properties of pseudo inverse?
3. State a necessary condition for the extremum of the functional $I=\int_{x_{0}}^{x_{1}} F\left(x, y, y^{\prime}\right) d x$.
4. Define Geodesic.
5. If $f(x)=k x^{2}, 0<x<3$ is to be a density function, find the value of ' k '.
6. If X is uniformly distributed over the interval $(-1,1)$, find the density function of $Y=\sin \left(\frac{\pi x}{2}\right)$.
7. Express the general form of an LP model in algebraic form.
8. What is transportation problem?
9. Find the half range sine series $f(x)=1$ in $(0,1)$.
10. Write down the exponential form of Fourier series of $f(x)$ in the interval (c, $c+2 l$).

$$
\text { PART B }-(5 \times 16=80 \text { marks })
$$

11. (a) Construct a singular value decomposition for $A=\left(\begin{array}{ccc}2 & 2 & -2 \\ 2 & 2 & -2 \\ -2 & -2 & 6\end{array}\right)$.
(b) Construct a QR decomposition for $\left(\begin{array}{ccc}-4 & 2 & 2 \\ 3 & -3 & 3 \\ 6 & 6 & 0\end{array}\right)$.
12. (a) (i) Find the extremal of the functional $\int_{x_{0}}^{x_{1}} y^{\prime}\left(1+x^{2} y^{\prime}\right) d x$.
(ii) Find the extremal of the functional $v[y(x)]=\int_{0}^{1}\left(1+y^{\prime \prime}\right)^{2} d x$ with $y(0)=0, y^{\prime}(0)=1, y(1)=1$ and $y^{\prime}(1)=1$.

Or

(b) (i) Find an approximate solution to the problem of minimization of the functional $I=\int_{0}^{1}\left(y^{\prime 2}-y^{2}+2 x y\right) d x$ with $y(0)=0=y(1)$ by Ritz method.
(ii) Find the extremal of the functional $v[y(x)]=\int_{0}^{\pi / 4}\left(y^{2}-y^{2}\right) d x$ such that $y(0)=0$ and the $2^{\text {nd }}$ boundary point move along the line $x=\pi / 4$.
13. (a) (i) Find the Moment Generating Function of Poisson distribution. Hence find its mean and variance.
(ii) The mileage which car owners get with a certain kind of radial tire is a random variable having an exponential distribution with mean $40,000 \mathrm{~km}$. Find the probabilities that one of these tires will last (1) at least $20,000 \mathrm{~km}$ and (2) atmost $30,000 \mathrm{~km}$.

Or

(b) (i) The marks obtained by a number of students in a certain subject are approximately normally distributed with mean 65 and standard deviation 5 . If 3 students are selected at random from this group, what is the probability that atleast one of them would have scored above 75 ?
(ii) In a certain city, the daily consumption of electric power in millions of kilowatt hours can be treated as a random variable having an Erlang distribution with parameters $\lambda=\frac{1}{2}$ and $k=3$. If the power plant of this city has a daily capacity of 12 millions kilowatt-hours, what is the probability that this power supply will be inadequate on any given day.
14. (a) Using Simplex method:

Maximise $Z=x_{1}+2 x_{2}+3 x_{3}-x_{4}$
subject to: $\quad x_{1}+2 x_{2}+3 x_{3}=15$
$2 x_{1}+x_{2}+5 x_{3}=20$
$x_{1}+2 x_{2}+x_{3}+x_{4}=10$
$x_{1}, x_{2}, x_{3}, x_{4} \geq 0$.
Or
(b) Solve the following transportation problem :

Store

Factory		A	B	C	a_{i}
	F_{1}	10	8	8	8
	F_{2}	10	7	10	7
	F_{3}	11	9	7	9
	F_{4}	12	14	10	4
	b_{j}	10	10	8	

15. (a) Expand the function $f(x)=x \sin x$ as a Fourier series in the interval $-\pi \leq x \leq \pi$. Hence deduce that $\frac{1}{1 \cdot 3}-\frac{1}{3 \cdot 5}+\frac{1}{5 \cdot 7}-\frac{1}{7 \cdot 9}+\cdots=\frac{\pi-2}{4}$.

Or
(b) (i) State and prove Parseval's theorem on Fourier coefficients.
(ii) Find the exponential form of Fourier series for $f(x)=e^{x}$ in $-\pi<x<\pi$.

