Reg. No. :

Question Paper Code: 71631

M.E. DEGREE EXAMINATION, JUNE/JULY 2013.

First Semester

Power Electronics and Drives

PE 9213/PE 913/10233 PE 104 - ANALYSIS OF INVERTERS

(Common to M.E. Power Systems Engineering)

(Regulation 2009 / 2010)

Time : Three hours

Maximum : 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

1. Compare Half Bridge and Full Bridge Inverters.

2. What are the types of voltage control methods in Inverters?

- 3. What is the ratio between third harmonic content to the fundamental in the line voltage of three phase Voltage Source Inverters?
- 4. Mention the advantages of Space Vector Modulation.
- 5. Why is converter grade SCRs is used in CSI?
- 6. Draw the equivalent circuit of single Phase ASCI for any one half cycle.
- 7. Give the different types of Multi level Inverters.
- 8. Mention the applications of multi level inverter.
- 9. What is the value of fundamental input voltage under quasi square wave control?
- 10. What is the need for modifications in series inverter?

- PART B $(5 \times 16 = 80 \text{ marks})$
- 11. (a) The 1φ half bridge inverter has a resistive load of $R = 2.4 \Omega$ and the dc input voltage is $V_s = 48 V$. Determine
 - (i) RMS O/P voltage at the fundamental frequency.
 - (ii) The output Power.
 - (iii) Average and Peak currents of each transistor.
 - (iv) The peaks reverse blocking voltage of each transistor. Derive the expression used.

Or

- (b) Explain Modified McMurray Half Bridge Inverter with necessary circuit and waveforms.
- 12. (a) Explain the working principle of space vector modulation three phase Inverter with necessary waveforms and circuits.

Or

- (b) A 3φ Bridge Inverter delivers power to a resistive load from a450 V dc source. For a star connected load of 10Ω /Phase, determine for both 180° and 120° mode operation.
 - (i) RMS value of load current
 - (ii) RMS value of thyristor current
 - (iii) Load power.
- 13. (a) A 1φ ASCI feed a resistive load. Describe its working with appropriate circuit and waveforms. Find also the circuit turn off time for the thyristors.

Or

- (b) In a 1 φ ASCI with inductive load SCRs T₃, T₄ are conducting a constant current =10 A. If T₁ and T₂ are turned on at t = 0 to force commutate T₃, T₄; find the time required for the load current to fall zero. Load L = 10 μ H and commutating Capacitance C = 6 μ F. Find also the total commutation interval and the circuit turn-off time for each of the SCRs.
- 14. (a) A 1φ diode clamped inverter has m = 5 Find the peak voltage and current ratings of diodes and switching devices if $V_{dc} = 5$ KV and $i_0 = 50 \sin(\theta \Pi/3)$.

Or

(b) Explain the five level capacitor clamped Multilevel Inverter with necessary circuit and waveforms.

15. (a) Explain the principle of class E resonant inverter with neat diagram and its waveforms.

11

Or

(b) Explain the principle of 1φ parallel inverter with neat diagram and its waveforms.