Reg. No.

Question Paper Code: 83296

M.E. DEGREE EXAMINATION, JANUARY 2014.

First Semester

Power Electronics and Drives

PX 7102 — ANALYSIS OF POWER CONVERTERS

(Common to M.E. Control and Instrumentation Engineering)

(Regulation 2013)

Time : Three hours

Maximum : 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Evaluate the output voltage ripple factor of a single-phase half-controlled converter, for a firing angle of 90°.
- 2. Why is the power factor of half controlled converters better than that of fully controlled Converters?
- 3. A three phase bridge converter is supplied from a star connected 208 V, 60 Hz . supply. The average load current is 60 A and has negligible ripple. Calculate the percentage reduction of output voltage due to commutation if the line inductance per phase is 0.5 mH.
- 4. What is the effect of source impedance on the performance of converters?
- 5. What are the assumptions to be made during analysis of DC-DC converter circuits?
- 6. Write the effect of parasitic elements in a step-up converter.
- 7. What is extinction angle?
- 8. What is a 'TRIAC'? sketch its static characteristics.
- 9. Define discontinuous load current, with reference to cyclo-converters.
- 10. List the applications of cycloconverters.

- 11. (a) For a single-phase fully controlled converter system, sketch waveforms for load voltage and load current for
 - (i) RL load
 - (ii) RL load with freewheeling diode across RL.

From a comparison of these waveforms, discuss the advantages of using a freewheeling diode. (16)

Or

- (b) (i) Discuss the inverter mode of operation of thyristor converters. (8)
 - (ii) The single phase half controlled converter has an RL load of L = 6.5 mH, R = 2.5 Ω , and E = 10 V. The input voltage is $V_s = 120V$ (rms) at 60Hz. Determine (1) load current I_{L0} at $\omega t = 0$, and the load current I_{L1} at $\omega t = \alpha = 60^{\circ}$, (2) Average thyristor current $I_{A'}$, (3) the rms thyristor current I_R , (4) the rms output current I_{rms} , and average output current I_{dc} . (8)
- 12. (a) Explain the working of a 3 phase semi converter for R load and draw the output waveforms for firing angles 0°, 30°, 60°, 90°. (16)

Or

- (b) (i) A three phase full converter bridge is connected to 'R' load. The three phase line voltage is of 400V. The average load current is of 25A. For $R = 20 \Omega$ find the firing angle. (8)
 - (ii) Explain the working of 12 pulse converter with necessary waveforms. (8)
- 13. (a) Explain the working principle of Cuk DC-DC converter with necessary waveforms. (16)

Or

- (b) (i) Describe the working of Quasi resonant converter with necessary diagrams. (8)
 - (ii) A boost regulator has an input voltage of $V_s = 5V$. The average output voltage $V_{\alpha} = 15V$ and the average load current $I_{\alpha} = 0.5A$. The switching frequency is 25 KHz. If L=150 µH, and C = 200 µH, determine (1) the duty cycle k, (2) the ripple current of inductor ΔI , (3) the peak current of inductor and (4) the ripple voltage of filter capacitor ΔV_c . (8)

 (a) Derive the expressions for RMS output voltage, RMS load current, and RMS thyristor current of a single phase full wave AC voltage controller for RL load. (16)

Or

- (b) (i) Explain the working principle of three phase half wave AC voltage controller. Draw the relevant waveforms for $\alpha = 150^{\circ}$. (8)
 - (ii) The three phase half wave controller supplies a wye connected resistive load of $R = 10\Omega$ and the line to line input voltage is 280 V

(rms), 60 Hz. The delay is $\alpha = \frac{\pi}{3}$. (8)

Determine:

15.

- (1) the rms output phase voltage V_0
- (2) the input power factor PF, and
- (3) expression for the instantaneous output voltage of phase α .
- (a) (i) Derive the expression for output voltage equation for a cycloconverter. (8)
 - (ii) A 3-phase to single-phase cycloconverter employs 3-pulse positive and negative group converters. Each converter is supplied from delta/star transformer with per phase turns ratio of 2:1. The supply voltage is 400V, 50 Hz. The RL load has 2 Ω and at low output frequency $\omega_0 L = 1.5\Omega$. In order to account for commutation overlap and thyristor turn-off time, the firing angle in the inversion mode should not exceed 160°. Compute
 - (1) the value of the fundamental RMS output voltage
 - (2) RMS output current and
 - (3) output power.

Or

- (b) (i) Analyse the midpoint and bridge configurations for a three phase to three phase cycloconverter. (8)
 - (ii) Explain the working of a single phase to single phase bridge type step-up cycloconverter with neat sketch.
 (8)

(8)