Reg. No.

Question Paper Code: 13934

M.E. DEGREE EXAMINATION, JANUARY 2015.

First Semester

Power Electronics and Drives

PX 7103 — ANALYSIS AND DESIGN OF INVERTERS

(Common to M.E. Power Systems Engineering)

(Regulation 2013)

Time : Three hours

Maximum : 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

1. Define commutation.

- 2. List the various PWM technique used in single phase inverters.
- 3. What is the limiting factor for the operating frequency of an inverter?
- 4. Write the different methods for control of output voltage in inverters.
- 5. Compare VSI and CSI.
- 6. What are the applications of load commutated inverter?
- 7. How selective harmonic elimination is achieved in multilevel inverters?
- 8. Mention the applications of multilevel inverters.
- 9. What is the value of fundamental input voltage under quasi square wave control?
- 10. How the output voltage is controlled in a series resonant inverters?

PART B —
$$(5 \times 16 = 80 \text{ marks})$$

11. (a) Explain the voltage control of single phase inverters using PWM technique with the help of waveforms. (16)

Or

- (b) (i) What are the techniques for harmonic reductions? (8)
 - (ii) A single phase full bridge inverter delivers power to a RLC load $R=2\Omega$ and $X_L=10\Omega$. The bridge operates with a periodicity of 0.2 ms. Calculate the value of C so that load commutation is achieved for the thyristors. Turn-off time for thyristors is 15 μs . Factor of safety is 2. Assume the load current to contain only the fundamental component. (8)

12. - (a) Discuss the principle of working of a three phase VSI. Draw phase and line voltage waveforms on the assumption that each thyristor conducts for 180° and the resistive load is delta connected. Derive expressions for RMS value of line voltage, phase voltage and fundamental phase voltage. (16)

- (b) With necessary diagram describe the space vector modulation techniques used to control the output voltage of three phase inverter. (16)
- 13. (a) In a single phase ASCI with inductive load SCRs T_3 and T_4 are conducting a constant current = 15 A. If T_1 and T_2 are turned ON at t = 0 to force commutate T_3 , T_4 , find the time required for the load current to fall zero. Load L = 12 μH and commutating capacitance, C = 5 μF . Find also the total communication interval and the circuit turn-off time for each of the SCRs. (16)

Or

- (b) Explain the single phase auto sequential commutated CSI with relevant mode diagrams and waveforms. (16)
- 14. (a) Draw and explain the operation of a three-level diode clamped multilevel inverter. Write the inverter relationship for R-phase. Derive the expressions for
 - (i) Transistor voltage,
 - (ii) Freewheeling diode current,
 - (iii) Capacitor junction current and
 - (iv) Clamping diode current.

Or

- (b) A single phase diode inverter has m = 5. Find the peak voltage and current ratings of diodes and switching devices if $V_{dc} = 10 KV$ and $i_0 = 50 \sin(\theta \pi/3)$. (16)
- 15. (a) Describe the operation of resonant DC link inverters with zero voltage switching. Draw necessary waveforms. (16)

Or

(b) Explain the operation of class E Resonant inverter with wave forms. (16)

(16)