Reg. No.

Question Paper Code : 66273

M.E. DEGREE EXAMINATION, DECEMBER 2015/JANUARY 2016

First Semester

Power Electronics and Drives

PX7104 : ADVANCED POWER SEMICONDUCTOR DEVICES

(Regulations - 2013)

Time : Three Hours

Maximum : 100 Marks

Answer ALL questions. PART – A $(10 \times 2 = 20 \text{ Marks})$

- 1. What is an ideal switch?
- 2. What are the parameters that affect the life time and performance of power semiconductor devices ?
- 3. What are converter grade and inverter grade thyristors?
- 4. Brief the phenomenon of secondary breakdown in BJTs.
- 5. What are the features of Field Controlled Thyristors ?
- 6. Sketch the VI characteristics of MCT.
- 7. How the gate of a thyristor is protected against over voltages and over currents?
- 8. Give the comparison between BJT and MCT in terms of gate circuit.
- 9. Give the significance of intelligent power modules.
- 10. The provision of heat sink improves the heat dissipation capability of the power device. Justify by modeling the system.

$PART - B (5 \times 13 = 65 Marks)$

- (a) Explain the steady state and reverse recovery characteristics of a power diode. (13)
 OR
 (b) (i) Explain the EMI phenomenon due to switching. What are the different
 - methods to reduce it ? (7)
 (ii) Differentiate static and dynamic behavior of a static and dynamic switch and explain how a practical switch deviates from an ideal switch behavior. (6)
- 12. (a) Explain the two transistor transient model of a thyristor.

OR

(b) Explain the switching characteristics of BJT and give the reason for storage time in power transistors. (13)

66273

(13)

13.	(a)	(i) (ii)	Elaborately explain the turn-on and turn-off process of a power MOSFET. Explain with a neat diagram the structure of an IGBT. OR	(7) (6)
	(b)	(i) (ii)	Explain the basic principle of operation of a GTO. What are the factors to be considered while operating MOSFETs in parallel?	(6) (7)
14.	(a)	(i) (ii)	What is the need for isolating power circuit and control circuit ? Explain the principle of operation of an optocoupler in isolating power electronic circuits. What is a snubber circuit ? Give the design procedure of a snubber circuit for a thyristor.	(6) (7)
	(b)	(i) (ii)	A micro-controller gives a square wave signal with an amplitude of 5V at 10 kHz. It is to be applied to an IGBT switch. Draw and explain a driver circuit for an IGBT. Explain the use of pulse transformer and pulse amplifier in a control circuit.	(7) (6)
15.	(a)	(i) (ii)	Explain in detail, with the help of neat sketch, the electrical equivalent circuit of thermal model of a power device. Explain the various thyristor mounting techniques with diagrams. OR	(6) (7)
	(b)	Expland t	ain the various types of heat sinks, the parameters for heat sink selection he design of heat sinks.	(13)

$PART - C (1 \times 15 = 15 Marks)$

- 16. Two thyristors are connected in parallel to share a total load current of 600 (a) (i) A. The ON state voltage drop of one thyristor is 1V at 300A and that of other thyristor is 1.5 V at 300 A. Determine the values of series resistances to force current sharing with 10% difference. Total voltage is 2.5 V.
 - (ii) Explain the terms (i) Reverse recovery time (ii) Peak inverse current and (iii) S-factor. Also derive the expressions for reverse recovery time and peak inverse current. (10)

OR

- What are the causes of latch-up in an IGBT ? How it can be avoided ? (b) (i)
 - Explain the terms thermal resistance and thermal impedance in detail and (ii) (5) give its significance.
 - The β of a bipolar junction transistor varies from 12 to 75. The load (iii) resistance is 1.5 Ω . The DC supply voltage is 40V and the input voltage to the base circuit is $V_B = 6$ V. If $V_{CE(sat)} = 1.2$ V, $V_{BE(sat)} = 1.6$ V and $R_B = 0.7 \Omega$, determine (a) the over drive factor (b) the forced β and (c) the power loss in the transistor.

(5)

(5)

(5)

2