\square

Question Paper Code : X 85766

M.E./M.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2020

First Semester
Control and Instrumentation Engineering
MA 5155 - APPLIED MATHEMATICS FOR ELECTRICAL ENGINEERS
(Common to M.E. Electrical Drives and Embedded Control/M.E. Embedded System Technologies/M.E. Instrumentation Engineering/M.E. Power Electronics and Drives/M.E. Power Systems Engineering)
(Regulations 2017)
Time : Three Hours
Maximum : 100 Marks

Answer ALL questions

PART - A
(10×2=20 Marks)

1. Determine a canonical basis for $\mathrm{A}=\left[\begin{array}{cc}3 & 5 \\ -2 & -4\end{array}\right]$.
2. Explain the terms chain and length of the chain.
3. Find the extremals of the following functional $\int_{x_{0}}^{x_{1}}\left[y^{\prime 2}-y^{2}+2 x y\right] d x$.
4. Find the extremals of the functional $\int_{x_{0}}^{x_{1}}\left[\frac{1+y^{2}}{y^{\prime 2}}\right] d x$.
5. Derive the moment generating function of uniform distribution.
6. From a pack of cards, a card is drawn at random. What is the probability of drawing a black card or a green card ?
7. Define basic feasible solution in linear programming problem.
8. Determine an initial basic feasible solution for the following transportation problem by using North-West corner rule.

	D_{1}		D_{2}	D_{3}	D_{4}
O_{1}	6	4	1	5	14
O_{2}	8	9	2	7	16
O_{3}	4	3	6	2	5
	4	4	4	35	

9. Explain the power signal with an example.
10. Write down the properties of the eigenvalues of a regular Sturm-Liouville system.
PART - B
11. a) Construct a $Q R$ factorization for the matrix $A=\left[\begin{array}{ccc}-4 & 2 & 2 \\ 3 & -3 & 3 \\ 6 & 6 & 0\end{array}\right]$. (OR)
b) Determine the number of generalized eigenvectors of each rank corresponding

$$
\text { to } \lambda=4 \text { that will appear in a canonical basis for } A=\left[\begin{array}{rrrrrr}
4 & 2 & 1 & 0 & 0 & 0 \tag{13}\\
0 & 4 & -1 & 0 & 0 & 0 \\
0 & 0 & 4 & 0 & 0 & 0 \\
0 & 0 & 0 & 4 & 2 & 0 \\
0 & 0 & 0 & 0 & 4 & 0 \\
0 & 0 & 0 & 0 & 0 & 7
\end{array}\right] \text {. }
$$

12. a) Show that the functional $\int_{0}^{\pi / 2}\left[2 x y+\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}\right] d t$ such that $x(0)=0$,

$$
\mathrm{x}(\pi / 2)=-1, \mathrm{y}(0)=0, \mathrm{y}(\pi / 2)=1 \text { is stationary for } \mathrm{x}=-\sin t, \mathrm{y}=\sin t .
$$

(OR)
b) Find the extremals of the functional $\int_{0}^{1}\left[2 x y-y^{2}-y^{\prime 2}\right] d x$ given that $y(0)=0$, $y(1)=0$ by using Rayleigh-Ritz method.
13. a) i) Let X be a discrete random variable with probability mass function $p(x)=\frac{1}{k^{x}}, x=1,2, \ldots(k=$ constant $)$. Find the moment generating function, mean and variance.
ii) A machine produces a certain item with a defectiveness of 1%. By applying Poisson approximation find the probability that a sample of 100 items selected at random from the total output will contain not more than one defective item.
(OR)
b) i) If X is a normal variate with $\mu=30$ and $\sigma=5$. Find (i) $\mathrm{P}(26 \leq \mathrm{X} \leq 40)$ and (ii) $\mathrm{P}[|\mathrm{X}-30|>5]$.
ii) A candidate applying for driving licence has the probability of 0.8 in passing the road test in a given trial. What is the probability that he will pass the test, (a) on the fourth trial (b) in less than four trials?
14. a) Use Big-M method to solve the following LPP.

Minimize $Z=2 x_{1}+x_{2}$ Subject to the constraints
$3 \mathrm{x}_{1}+\mathrm{x}_{2}=3 ; 4 \mathrm{x}_{1}+3 \mathrm{x}_{2} \geq 6 ; \mathrm{x}_{1}+2 \mathrm{x}_{2} \leq 3, \mathrm{x}_{1}, \mathrm{x}_{2} \geq 0$.
(OR)
b) Obtain an initial basic feasible solution to the following transportation problem by using Vogel's approximation method (VAM).

Stores

Warehouse	A	I	II	III	IV	34	Availability
		5	1	3	3		
	B	3	3	5	4	15	
	C	6	4	4	3	12	
	D	4	-1	4	2	19	
		21	25	17	17	80	

15. a) Calculate the average power of the periodic signal
$($ Period $T=2) ; f(t)=2 \cos 5 \pi t+\sin 6 \pi t$,
i) Using a time domain analysis.
ii) Using a frequency domain analysis.
(OR)
b) Find the eigenvalues and eigenfunctions of $y^{\prime \prime}+\lambda y=0,<x<p, y(0)=0$, $y(p)=0$.
16. a) Use Two-phase simplex method to solve the following LPP.

Maximize $Z=2 x_{1}+x_{2}+x_{3}$ subject to the constraints
$4 \mathrm{x}_{1}+6 \mathrm{x}_{2}+3 \mathrm{x}_{3} \leq 8$,
$3 \mathrm{x}_{1}-6 \mathrm{x}_{2}-4 \mathrm{x}_{3} \leq 1$
$2 \mathrm{x}_{1}+3 \mathrm{x}_{2}-5 \mathrm{x}_{3} \geq 4$ where $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3} \geq 0$.
(OR)
b) Solve the following system of equations by using least square method.

$$
\begin{equation*}
\mathrm{x}_{3}+2 \mathrm{x}_{4}=1 ; \mathrm{x}_{1}+2 \mathrm{x}_{2}+2 \mathrm{x}_{3}+3 \mathrm{x}_{4}=2 \tag{15}
\end{equation*}
$$

