	-				
1111		MS III	8 ((8))	8 (12) B	
- 1103		112 HE		Blait B	##
					••• •••

Reg. No. :						

Question Paper Code: 52240

B.E./B.Tech, DEGREE EXAMINATION, NOVEMBER/DECEMBER 2017

Third Semester

Civil Engineering
CE 2201 – MECHANICS OF SOLIDS

(Regulations 2008)

(Common to PTCE 2201 – Mechanics of Solids for BE (Part – Time) Third Semester – Civil Engineering – Regulations 2009)

Time: Three Hours

. Pro liment transference generalisme in grapher or det normalisme grapher etc. Est de la colonie etc. Est est

and a factor of the page of the control of the cont

Maximum: 100 Marks

Answer ALL the questions and missiong data may be appropriately assumed.

PART - A

(10×2=20 Marks)

- 1. What do you mean by a stable structure?
- 2. Write a mathematical expression for relative elongation.
- 3. State the main principle involved in analysis of plane-trusses by method of joints.
- 4. Give a mathematical expression for the longitudinal shear stress developed in a pressurized close pipe.
- 5. Draw the BMD for a cantilever of span 1 m carrying a central moment-couple of 1 kNm.
- 6. Mention the two examples for the proportional beam.
- 7. Sketch the conjugate beam for a cantilever beam.
- 8. Define shear-center in a beam section.
- 9. Highlight the critical merits of hollow-shafts over solid-shafts.
- 10. What do you understand by proof-load for a leaf-spring?

PART - B

(5×16=80 Marks)

- 11. a) i) Appropriately define the terms: stability, strength and stiffness of a structural element.

 (6)
 - ii) With usual notations, obtain a mathematical expression connecting the three modulii of elasticity. (10)

(OR)

- b) i) Draw the stress-strain curve for a mild-steel material indicating the salient points in it. (4+4)
 - ii) A machine element is subjected to pure-shear state of stress on it with a magnitude of MPa. Determine the principal stresses and the principal planes in it.
- 12. a) i) Enlist the assumptions made in the analysis of plane-trusses. (6)
 - ii) Starting from first principles, obtain the mathematical expression for the Hoop-and longitudinal stresses developed in a long closed pipe subjected to an internal fluid pressure.

(OR)

b) By method of sections, analyze the plane-truss shown in Fig. 1 and also, tabulate the member forces developed in it. (12+4)

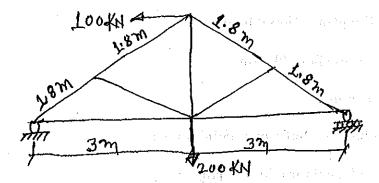


Fig. 1

13. a) Analyze the double-overhanging beam shown in Fig. 2 and draw the SF and BMDs indicating the salient values in them. (4+6+6)

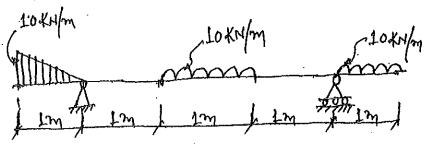
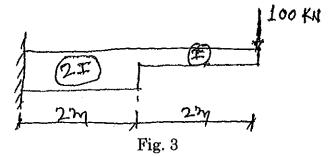


Fig. 2


(OR)

- b) With usual notations, derive the simple bending equation with clearly stating the assumptions made in it. (6+10)
- 14. a) i) Appropriately state the two theorems of the area-moment method and also, explain how these are useful in the calculations of slope and deflections in beams.

 (6+3)
 - ii) Prove that the maximum shear stress developed in a rectangular beam section is 150% of the average shear stress developed at that section. (7)

(OR)

b) i) By conjugate-beam method, find the slope and deflection at the free-end of the prismatic cantilever shown in Fig. 3. (5+5)

- ii) Show that the maximum shear stress developed in a circular beam section is 125% of the average shear stress developed at that section. (6)
- 15. a) With usual notations, derive the simple torsion equation with clearly stating the assumptions made in it. (6+10)

(OR)

- b) i) Analyze the fixed-shaft of diameter 'd' and length 'I' carrying a central twisting torque of 'T'. Also, draw the torque-diagram for the fixed-shaft. (7+3)
 - ii) State the practical uses of leaf-spring, open-coiled, closely-coiled helical springs in appropriate fields of engineering. (3×2)